forked from keineahnung2345/leetcode-cpp-practices
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path1161. Maximum Level Sum of a Binary Tree.cpp
162 lines (138 loc) · 4.78 KB
/
1161. Maximum Level Sum of a Binary Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
//BFS
//Runtime: 248 ms, faster than 15.14% of C++ online submissions for Maximum Level Sum of a Binary Tree.
//Memory Usage: 74.3 MB, less than 100.00% of C++ online submissions for Maximum Level Sum of a Binary Tree.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int maxLevelSum(TreeNode* root) {
queue<TreeNode*> qNode;
queue<int> qLevel;
int maxLevel = 0, maxSum = INT_MIN;
int lastLevel = 1, lastSum = 0;
TreeNode* node;
qNode.push(root);
qLevel.push(lastLevel);
while(!qNode.empty()){
node = qNode.front();
// cout << node->val << endl;
qNode.pop();
lastLevel = qLevel.front();
qLevel.pop();
lastSum += node->val;
if(node->left){
qNode.push(node->left);
qLevel.push(lastLevel+1);
}
if(node->right){
qNode.push(node->right);
qLevel.push(lastLevel+1);
}
//clean up before entering new level
if(lastLevel != qLevel.front()){
if(lastSum > maxSum){
maxSum = lastSum;
maxLevel = lastLevel;
}
lastSum = 0;
}
}
return maxLevel;
}
};
//BFS, cleaner
//Runtime: 232 ms, faster than 55.42% of C++ online submissions for Maximum Level Sum of a Binary Tree.
//Memory Usage: 72.7 MB, less than 100.00% of C++ online submissions for Maximum Level Sum of a Binary Tree.
//https://leetcode.com/problems/maximum-level-sum-of-a-binary-tree/discuss/360968/JavaPython-3-Two-codes-language%3A-BFS-level-traversal-and-DFS-level-sum.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int maxLevelSum(TreeNode* root) {
queue<TreeNode*> q;
TreeNode* node;
int levelSize;
int curLevel = 1;
int maxSum = INT_MIN, maxLevel = -1;
int levelSum = 0;
q.push(root);
while(!q.empty()){
levelSize = q.size();
for(int i = 0; i < levelSize; i++){
node = q.front();
q.pop();
if(node->left){
q.push(node->left);
}
if(node->right){
q.push(node->right);
}
levelSum += node->val;
}
//clean up before going to next level
if(levelSum > maxSum){
maxSum = levelSum;
maxLevel = curLevel;
}
levelSum = 0;
curLevel++;
}
return maxLevel;
}
};
//DFS
//https://leetcode.com/problems/maximum-level-sum-of-a-binary-tree/discuss/360968/JavaPython-3-Two-codes-language%3A-BFS-level-traversal-and-DFS-level-sum.
//Runtime: 220 ms, faster than 87.98% of C++ online submissions for Maximum Level Sum of a Binary Tree.
//Memory Usage: 70.4 MB, less than 100.00% of C++ online submissions for Maximum Level Sum of a Binary Tree.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
//iterate tree and fill levelSums
void dfs(TreeNode* node, vector<int>& levelSums, int level){
if(!node) return;
//ex: levelSums is empty, we need to make its length 1 so that we can set levelSums[0] as node->val
if(level == levelSums.size()){
levelSums.push_back(node->val);
}else{
levelSums[level] += node->val;
}
if(node->left){
dfs(node->left, levelSums, level+1);
}
if(node->right){
dfs(node->right, levelSums, level+1);
}
};
int maxLevelSum(TreeNode* root) {
//levelSums[0]: the sum of nodes' values in level 0+1=1
vector<int> levelSums;
//pretend the first level is level 0
//later will add 1 to convert it to the real level
dfs(root, levelSums, 0);
//max_element: Returns an iterator pointing to the element with the largest value in the range [first,last).
return distance(levelSums.begin(),
max_element(levelSums.begin(), levelSums.end())) + 1;
}
};