This is the official implementation for the paper, "A2J-Transformer: Anchor-to-Joint Transformer Network for 3D Interacting Hand Pose Estimation from a Single RGB Image", CVPR 2023.
Paper link here: A2J-Transformer: Anchor-to-Joint Transformer Network for 3D Interacting Hand Pose Estimation from a Single RGB Image
- (2025-1-13) Some of the training files of Hands2017 dataset are updated
here
. - (2023-9-19) Training code released! All training codes for Interhand 2.6M, NYU and HANDS 2017 dataset.
- (2023-9-19) Updated
test.py
andbase.py
, added the argparsetest_epoch
. Updated the name of our pre-trained model, fromsnapshot.pth.tar
tosnapshot_0.pth.tar
. - (2023-4-23) Deleted some compiled files in the
dab_deformable_detr\ops
folder.
-
Our code is tested under Ubuntu 20.04 environment with NVIDIA 2080Ti GPU and NVIDIA 3090 GPU, both Pytorch1.7 and Pytorch1.11 work.
-
Python>=3.7
We recommend you to use Anaconda to create a conda environment:
conda create --name a2j_trans python=3.7
Then, activate the environment:
conda activate a2j_trans
-
PyTorch>=1.7.1, torchvision>=0.8.2 (following instructions here)
We recommend you to use the following pytorch and torchvision:
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch
-
Other requirements
conda install tqdm numpy matplotlib scipy pip install opencv-python pycocotools
Compiling CUDA operators(Following Deformable-DETR)
cd ./dab_deformable_detr/ops
sh make.sh
-
Please download InterHand 2.6M Dataset and organize them as following:
your_dataset_path/ └── Interhand2.6M_5fps/ ├── annotations/ └── images/
-
Please download our pre-trained model and organize the code as following:
a2j-transformer/ ├── dab_deformable_detr/ ├── nets/ ├── utils/ ├── ...py ├── datalist/ | └── ...pkl └── output/ └── model_dump/ └── snapshot_0.pth.tar
The
datalist
folder and the pkl files denotes the dataset-list generated during running the code. -
In
config.py
, setinterhand_anno_dir
,interhand_images_path
to the dataset abs directory. -
In
config.py
, setcur_dir
to the a2j-transformer code directory. -
Run the following script:
python test.py --gpu <your_gpu_ids>
You can also choose to change the
gpu_ids
intest.py
.
- Please use our code following A2J to prepare the datasets.
- If you have prepared, just run the
nyu.py
andhands2017.py
.
Our code is protected by patents and cannot be used for commercial purposes. If you have commercial needs, please contact Prof. Yang Xiao (Huazhong University of Science and Technology): Yang_Xiao@hust.edu.cn
.
If you find our work useful in your research or publication, please cite our work:
@inproceedings{jiang2023a2j,
title={A2J-Transformer: Anchor-to-Joint Transformer Network for 3D Interacting Hand Pose Estimation from a Single RGB Image},
author={Jiang, Changlong and Xiao, Yang and Wu, Cunlin and Zhang, Mingyang and Zheng, Jinghong and Cao, Zhiguo and Zhou, Joey Tianyi},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={8846--8855},
year={2023}
}