-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmodel.py
269 lines (230 loc) · 11.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import numpy as np
from config import cfg
from anchor import *
from nets.layer import MLP
from nets.position_encoding import build_position_encoding
# use dab-deformable-detr
from dab_deformable_detr.deformable_transformer import build_deforamble_transformer
from dab_deformable_detr.backbone import build_backbone
from utils.miscdetr import NestedTensor
import copy
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
class A2J_model(nn.Module):
def __init__(self, backbone_net, position_embedding, transformer, num_classes, num_queries, num_feature_levels,
with_box_refine=True, two_stage=False, use_dab=True,
num_patterns=0, anchor_refpoints_xy=True, fix_anchor=False, is_3D=True, use_lvl_weights=False):
""" Initializes the model.
Parameters:
backbone_net: torch module of the backbone to be used.
transformer: torch module of the transformer architecture.
num_classes: number of object classes, given 42
num_queries: number of object queries, given 256*3
num_feature_levels: number of feature layers used form backbone, default = 4
with_box_refine: iterative bounding box refinement
two_stage: two-stage Deformable DETR, default is False
use_dab: using dab-deformable-detr
num_patterns: number of pattern embeddings
anchor_refpoints_xy: init the x,y of anchor boxes to A2J anchors and freeze them.
fix_anchor: if fix the reference points as the initial anchor points to stop renew them
is_3D: if the model regresses 3D coords of the keypoints
"""
super(A2J_model, self).__init__()
self.backbone = backbone_net
self.position_embedding = position_embedding
self.transformer = transformer
self.num_classes = num_classes # default = 42
self.num_queries = num_queries # default = 768
self.num_feature_levels = num_feature_levels # default = 4
self.with_box_refine = with_box_refine
self.two_stage = two_stage
self.use_dab = use_dab
self.num_patterns = num_patterns
self.anchor_refpoints_xy = anchor_refpoints_xy
self.fix_anchor = fix_anchor
self.is_3D = is_3D
self.use_lvl_weights = use_lvl_weights
self.kernel_size = cfg.kernel_size
hidden_dim = transformer.d_model # =cfg.hidden_dim, default = 256
self.bbox_embed_anchor = MLP(hidden_dim, hidden_dim, 2, 3)
if self.is_3D:
self.bbox_embed_keypoints = MLP(hidden_dim, hidden_dim, self.num_classes *3, 3) ## 3D coord
else:
assert self.is_3D is False
self.bbox_embed_keypoints = MLP(hidden_dim, hidden_dim, self.num_classes *2, 3) ## only xy-coord
self.anchor_weights = MLP(hidden_dim, hidden_dim, self.num_classes *1, 3)
if not two_stage:
if not use_dab:
self.query_embed = nn.Embedding(num_queries, hidden_dim*2)
else:
self.tgt_embed = nn.Embedding(num_queries, hidden_dim)
self.refpoint_embed = nn.Embedding(num_queries, 3)
if anchor_refpoints_xy:
self.anchors = generate_all_anchors_3d()
self.anchors = torch.from_numpy(self.anchors).cuda().float()
self.refpoint_embed.weight.data = self.anchors
self.refpoint_embed.weight.data.requires_grad = False
if num_feature_levels > 1:
num_backbone_outs = len(self.backbone.strides) #8,16,32
input_proj_list = []
for _ in range(num_backbone_outs):
in_channels = self.backbone.num_channels[_] # [512, 1024, 2048]
input_proj_list.append(nn.Sequential(
nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
nn.GroupNorm(32, hidden_dim),
))
for _ in range(num_feature_levels - num_backbone_outs):
input_proj_list.append(nn.Sequential(
nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(32, hidden_dim),
))
in_channels = hidden_dim
self.input_proj = nn.ModuleList(input_proj_list)
else:
self.input_proj = nn.ModuleList([
nn.Sequential(
nn.Conv2d(self.backbone.num_channels[0], hidden_dim, kernel_size=1),
nn.GroupNorm(32, hidden_dim),
)])
prior_prob = 0.01
bias_value = -math.log((1 - prior_prob) / prior_prob)
for proj in self.input_proj:
nn.init.xavier_uniform_(proj[0].weight, gain=1)
nn.init.constant_(proj[0].bias, 0)
num_pred = (transformer.decoder.num_layers + 1) if two_stage else transformer.decoder.num_layers
if with_box_refine:
self.bbox_embed_anchor = _get_clones(self.bbox_embed_anchor, num_pred)
self.transformer.decoder.bbox_embed = self.bbox_embed_anchor
else:
nn.init.constant_(self.bbox_embed_anchor.layers[-1].bias.data[2:], -2.0)
self.bbox_embed_anchor = nn.ModuleList([self.bbox_embed_anchor for _ in range(num_pred)])
self.transformer.decoder.bbox_embed = None
if two_stage:
for box_embed in self.bbox_embed_anchor:
nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0)
# for final output
nn.init.constant_(self.bbox_embed_anchor[0].layers[-1].bias.data[2:], -2.0)
self.bbox_embed_keypoints = _get_clones(self.bbox_embed_keypoints, num_pred)
nn.init.constant_(self.bbox_embed_keypoints[0].layers[-1].bias.data[2:], -2.0)
self.anchor_weights = _get_clones(self.anchor_weights, num_pred)
nn.init.constant_(self.anchor_weights[0].layers[-1].bias.data[2:], -2.0)
self.generate_keypoints_coord_new = generate_keypoints_coord_new(self.num_classes, is_3D = self.is_3D)
self.a2jloss_new = a2jloss_new(is_3D = self.is_3D, use_lvl_weights= self.use_lvl_weights)
# def forward(self, x):
def forward(self, inputs, targets, meta_info, mode):
input_img = inputs['img']
input_mask = inputs['mask']
batch_size = input_img.shape[0]
if cfg.dataset == 'nyu' or cfg.dataset == 'hands2017':
n, c, h, w = input_img.size() # x: [B, 1, H ,W]
input_img = input_img[:,0:1,:,:] # depth
input_img = input_img.expand(n,3,h,w) ## convert depth to rgb domain
samples = NestedTensor(input_img,input_mask.squeeze(1))
## get pyramid features
features, pos = self.backbone(samples)
srcs = []
masks = []
for l, feat in enumerate(features):
src, mask = feat.decompose()
srcs.append(self.input_proj[l](src))
masks.append(mask)
assert mask is not None
if self.num_feature_levels > len(srcs):
_len_srcs = len(srcs)
for l in range(_len_srcs, self.num_feature_levels):
if l == _len_srcs:
src = self.input_proj[l](features[-1].tensors)
else:
src = self.input_proj[l](srcs[-1])
m = samples.mask
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0]
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
srcs.append(src)
masks.append(mask)
pos.append(pos_l)
tgt_embed = self.tgt_embed.weight
refanchor = self.refpoint_embed.weight
## Convert refanchor to [0,1] range
refanchor = refanchor / cfg.output_hm_shape_all
query_embeds = torch.cat((tgt_embed, refanchor), dim=1)
## Transformer module. Enhance features.
hs, init_reference, inter_references, enc_outputs_class, enc_outputs_coord_unact = self.transformer(srcs, masks, pos, query_embeds)
outputs_coords = []
outputs_weights = []
references = []
## Predict offset and weights for each layer.
## Total 6 layers, which is the same as enc/dec layers.
for lvl in range(hs.shape[0]):
if lvl == 0:
reference = init_reference.squeeze(0).expand(batch_size,-1 ,-1)
else:
reference = inter_references[lvl - 1]
outputs_weight = self.anchor_weights[lvl](hs[lvl])
tmp = self.bbox_embed_keypoints[lvl](hs[lvl])
assert reference.shape[-1] == 3
## convert result to [0,256] range, same to size of output img
reference = reference * cfg.output_hm_shape_all
outputs_coord = tmp * cfg.output_hm_shape_all
outputs_coords.append(outputs_coord)
outputs_weights.append(outputs_weight)
references.append(reference)
total_outputs_coord = torch.stack(outputs_coords) ## A2J-offsets
total_outputs_weights = torch.stack(outputs_weights) ## A2J-weights
total_references = torch.stack(references) ## A2J-anchors
## generate final coords
keypoints_coord, anchor = self.generate_keypoints_coord_new(total_outputs_coord, total_outputs_weights, total_references)
## get loss
anchor_loss, regression_loss = self.a2jloss_new(keypoints_coord, anchor, targets['joint_coord'], meta_info['joint_valid'])
if mode == 'train':
loss = {}
loss['Cls_loss'] = anchor_loss
loss['Reg_loss'] = regression_loss
loss['A2Jloss'] = 1*anchor_loss + regression_loss* cfg.RegLossFactor
loss['total_loss'] =loss['A2Jloss']
return loss
elif mode == 'test':
## use the result of last layer as the final result
pred_keypoints = keypoints_coord[-1]
out = {}
out['joint_coord'] =pred_keypoints
if 'inv_trans' in meta_info:
out['inv_trans'] = meta_info['inv_trans']
if 'joint_coord' in targets:
out['target_joint'] = targets['joint_coord']
if 'joint_valid' in meta_info:
out['joint_valid'] = meta_info['joint_valid']
if 'hand_type_valid' in meta_info:
out['hand_type_valid'] = meta_info['hand_type_valid']
return out
def get_model(mode, joint_num):
backbone_net = build_backbone(cfg)
transformer = build_deforamble_transformer(cfg)
position_embedding = build_position_encoding(cfg)
model = A2J_model(backbone_net,
position_embedding,
transformer,
num_classes = joint_num * 2,
num_queries = cfg.num_queries,
num_feature_levels = cfg.num_feature_levels,
two_stage=cfg.two_stage,
use_dab=True,
num_patterns=cfg.num_patterns,
anchor_refpoints_xy=cfg.anchor_refpoints_xy,
fix_anchor = cfg.fix_anchor,
is_3D=cfg.is_3D,
use_lvl_weights=cfg.use_lvl_weights)
## Statistical Model Size
print('BackboneNet No. of Params = %d M'%(sum(p.numel() for p in backbone_net.parameters() if p.requires_grad)/1e6))
print('Transformer No. of Params = %d M'%(sum(p.numel() for p in transformer.parameters() if p.requires_grad)/1e6))
print('Total No. of Params = %d M' % (sum(p.numel() for p in model.parameters() if p.requires_grad)/1e6))
return model