-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFSC_finetune_cross.py
515 lines (419 loc) · 20.2 KB
/
FSC_finetune_cross.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
import argparse
import datetime
import json
import numpy as np
import os
import time
import random
from pathlib import Path
import math
import sys
from PIL import Image
import torch.nn as nn
from torchvision import transforms
import torch
import torch.backends.cudnn as cudnn
# from torch.utils.tensorboard import SummaryWriter
import scipy.ndimage as ndimage
from torch.utils.data import Dataset
import torchvision
import wandb
import timm.optim.optim_factory as optim_factory
import torchvision.transforms.functional as TF
import util.misc as misc
from util.misc import NativeScalerWithGradNormCount as NativeScaler
import util.lr_sched as lr_sched
from util.FSC147 import transform_train
import models_mae_cross
# import warnings
# warnings.filterwarnings('ignore')
torch.set_float32_matmul_precision('high')
def get_args_parser():
parser = argparse.ArgumentParser('MAE pre-training', add_help=False)
parser.add_argument('--batch_size', default=26, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='mae_vit_base_patch16', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--mask_ratio', default=0.5, type=float,
help='Masking ratio (percentage of removed patches).')
parser.add_argument('--norm_pix_loss', action='store_true',
help='Use (per-patch) normalized pixels as targets for computing loss')
parser.set_defaults(norm_pix_loss=False)
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR')
# Dataset parameters
parser.add_argument('--data_path', default='/tmp/datasets/', type=str,
help='dataset path')
parser.add_argument('--anno_file', default='annotation_FSC147_384.json', type=str,
help='annotation json file')
parser.add_argument('--data_split_file', default='Train_Test_Val_FSC_147.json', type=str,
help='data split json file')
parser.add_argument('--class_file', default='ImageClasses_FSC147.txt', type=str,
help='class json file')
parser.add_argument('--im_dir', default='images_384_VarV2', type=str,
help='images directory')
parser.add_argument('--gt_dir', default='gt_density_map_adaptive_384_VarV2', type=str,
help='ground truth directory')
parser.add_argument('--output_dir', default='./data/out/fim6_dir',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default=None, type=str,
help='resume from checkpoint')
# Training parameters
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# Distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
# Logging parameters
parser.add_argument('--log_dir', default='./logs/fim6_dir',
help='path where to tensorboard log')
parser.add_argument("--title", default="CounTR_finetuning", type=str)
parser.add_argument("--wandb", default=None, type=str)
parser.add_argument("--team", default="fdudip", type=str)
parser.add_argument("--wandb_id", default=None, type=str)
return parser
os.environ["CUDA_LAUNCH_BLOCKING"] = '1'
class TestData(Dataset):
def __init__(self):
self.img = data_split['val']
self.img_dir = im_dir
def __len__(self):
return len(self.img)
def __getitem__(self, idx):
im_id = self.img[idx]
anno = annotations[im_id]
dots = np.array(anno['points'])
image = Image.open('{}/{}'.format(im_dir, im_id))
image.load()
W, H = image.size
new_H = 384
new_W = 16 * int((W / H * 384) / 16)
scale_factor_W = float(new_W) / W
scale_factor_H = float(new_H) / H
image = transforms.Resize((new_H, new_W))(image)
Normalize = transforms.Compose([transforms.ToTensor()])
image = Normalize(image)
# Only for visualisation purpose, no need for ground truth density map indeed.
gt_map = np.zeros((image.shape[1], image.shape[2]), dtype='float32')
for i in range(dots.shape[0]):
gt_map[min(new_H - 1, int(dots[i][1] * scale_factor_H))][min(new_W - 1, int(dots[i][0] * scale_factor_W))] = 1
gt_map = ndimage.gaussian_filter(gt_map, sigma=(1, 1), order=0)
gt_map = torch.from_numpy(gt_map)
gt_map = gt_map * 60
sample = {'image': image, 'dots': dots, 'gt_map': gt_map, 'name': im_id}
return sample['image'], sample['dots'], sample['gt_map'], sample['name']
class TrainData(Dataset):
def __init__(self):
self.img = data_split['train']
random.shuffle(self.img)
self.img_dir = im_dir
self.TransformTrain = transform_train(data_path)
def __len__(self):
return len(self.img)
def __getitem__(self, idx):
im_id = self.img[idx]
anno = annotations[im_id]
dots = np.array(anno['points'])
image = Image.open('{}/{}'.format(im_dir, im_id))
image.load()
density_path = gt_dir / (im_id.split(".jpg")[0] + ".npy")
density = np.load(density_path).astype('float32')
sample = {'image': image, 'gt_density': density, 'dots': dots, 'id': im_id}
sample = self.TransformTrain(sample)
return sample['image'], sample['gt_density']
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
dataset_train = TrainData()
dataset_val_zs = TestData()
if True: # args.distributed:
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_val_zs = torch.utils.data.DistributedSampler(
dataset_val_zs, num_replicas=num_tasks, rank=global_rank, shuffle=False
)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
loss_func = nn.MSELoss()
log_writer = None
if global_rank == 0:
if args.wandb is not None:
wandb_run = wandb.init(
config=args,
resume="allow",
project=args.wandb,
name=args.title,
entity=args.team,
tags=["CounTR", "finetuning"],
id=args.wandb_id,
)
else:
wandb_run = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
data_loader_val_zs = torch.utils.data.DataLoader(
dataset_val_zs, sampler=sampler_val_zs,
batch_size=1,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
# define the model
model = models_mae_cross.__dict__[args.model](
norm_pix_loss=args.norm_pix_loss)
model.to(device)
model_without_ddp = model
print("Model = %s" % str(model_without_ddp))
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
param_groups = optim_factory.add_weight_decay(
model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
zs_min_MAE = 99999
misc.load_model_FSC(args=args, model_without_ddp=model_without_ddp)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
# train one epoch
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(
window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
accum_iter = args.accum_iter
# some parameters in training
train_loss = 0
train_rmse = 0
pred_cnt = 0
gt_cnt = 0
optimizer.zero_grad()
# if misc.is_main_process():
# if log_writer is not None:
# print('log_dir: {}'.format(log_writer.log_dir))
for data_iter_step, (samples, gt_density) in enumerate(
metric_logger.log_every(data_loader_train, print_freq, header)):
epoch_1000x = int(
(data_iter_step / len(data_loader_train) + epoch) * 1000)
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(
optimizer, data_iter_step / len(data_loader_train) + epoch, args)
samples = samples.to(device, non_blocking=True).half()
gt_density = gt_density.to(device, non_blocking=True).half()
with torch.cuda.amp.autocast():
output = model(samples)
# Compute loss function
loss = loss_func(output, gt_density)
loss_value = loss.item()
# print(f'{data_iter_step}/{len(data_loader_train)}: loss: {loss_value}')
train_loss += loss_value
# Output visualisation information to tensorboard
if data_iter_step == 0 and misc.is_main_process():
if log_writer is not None:
fig = output[0].unsqueeze(0).repeat(3, 1, 1)
f1 = gt_density[0].unsqueeze(0).repeat(3, 1, 1)
log_writer.add_images(
'gt_density', (samples[0] / 2 + f1 / 10), int(epoch), dataformats='CHW')
log_writer.add_images(
'density map', (fig / 20), int(epoch), dataformats='CHW')
log_writer.add_images(
'density map overlay', (samples[0] / 2 + fig / 10), int(epoch), dataformats='CHW')
if wandb_run is not None:
wandb_densities = []
for i in range(samples.shape[0]):
fig = output[i].unsqueeze(0).repeat(3, 1, 1)
f1 = gt_density[i].unsqueeze(0).repeat(3, 1, 1)
w_densities = torch.cat(
[samples[i], f1, fig], dim=2)
w_densities = misc.min_max(w_densities)
wandb_densities += [wandb.Image(
torchvision.transforms.ToPILImage()(w_densities))]
wandb.log({f"Train/Density Predictions": wandb_densities},
step=epoch_1000x, commit=False)
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if (data_iter_step + 1) % accum_iter == 0 and misc.is_main_process():
if log_writer is not None:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
log_writer.add_scalar(
'train_loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', lr, epoch_1000x)
if wandb_run is not None:
log = {"Train/Loss": loss_value_reduce, "Train/LR": lr}
wandb.log(log, step=epoch_1000x,
commit=False)
# Only use 1 batches when overfitting
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
train_stats = {k: meter.global_avg for k,
meter in metric_logger.meters.items()}
# Begin Validation
val_zs_mae = 0
val_zs_metric_logger = misc.MetricLogger(delimiter=" ")
for data_iter_step, (samples, gt_dots, gt_map, im_name) in \
enumerate(val_zs_metric_logger.log_every(data_loader_val_zs, print_freq, header)):
im_name = Path(im_name[0])
gt_map = gt_map.to(device, non_blocking=True)
samples = samples.to(device, non_blocking=True)
gt_dots = gt_dots.to(device, non_blocking=True).half()
_, _, h, w = samples.shape
density_map = torch.zeros([h, w])
density_map = density_map.to(device, non_blocking=True)
start = 0
prev = -1
with torch.no_grad():
while start + 383 < w:
output, = model(samples[:, :, :, start:start + 384])
output = output.squeeze(0)
b1 = nn.ZeroPad2d(padding=(start, w - prev - 1, 0, 0))
d1 = b1(output[:, 0:prev - start + 1])
b2 = nn.ZeroPad2d(padding=(prev + 1, w - start - 384, 0, 0))
d2 = b2(output[:, prev - start + 1:384])
b3 = nn.ZeroPad2d(padding=(0, w - start, 0, 0))
density_map_l = b3(density_map[:, 0:start])
density_map_m = b1(density_map[:, start:prev + 1])
b4 = nn.ZeroPad2d(padding=(prev + 1, 0, 0, 0))
density_map_r = b4(density_map[:, prev + 1:w])
density_map = density_map_l + density_map_r + density_map_m / 2 + d1 / 2 + d2
prev = start + 383
start = start + 128
if start + 383 >= w:
if start == w - 384 + 128:
break
else:
start = w - 384
cnt_err = torch.norm((density_map - gt_map), p=2)
val_zs_mae += cnt_err
val_zs_metric_logger.synchronize_between_processes()
if misc.is_main_process():
if wandb_run is not None:
log = {"Val/Loss": val_zs_mae}
fig = density_map.unsqueeze(0).repeat(3, 1, 1)
f1 = gt_map[0].unsqueeze(0).repeat(3, 1, 1)
w_densities = torch.cat(
[samples[0], fig, f1], dim=2)
w_densities = misc.min_max(w_densities)
wandb_densities = [wandb.Image(
torchvision.transforms.ToPILImage()(w_densities))]
wandb.log({f"Val/Density Predictions": wandb_densities},
step=epoch_1000x, commit=False)
wandb.log(log, step=epoch_1000x,
commit=True if data_iter_step == 0 else False)
print(log)
# save train status and model
if args.output_dir and (epoch % 50 == 0 or epoch + 1 == args.epochs):
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, suffix=f"_{epoch}")
if args.output_dir and val_zs_mae / (len(data_loader_val_zs)) < zs_min_MAE:
zs_min_MAE = val_zs_mae / (len(data_loader_val_zs))
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, suffix="_zs_min")
# Output log status
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'Current MAE': train_loss / (len(data_loader_train) * args.batch_size),
'RMSE': (train_rmse / (len(data_loader_train) * args.batch_size)) ** 0.5,
'epoch': epoch, }
print('Current MAE: {:5.2f}, RMSE: {:5.2f} '.format(train_loss / (len(data_loader_train) * args.batch_size), (
train_rmse / (len(data_loader_train) * args.batch_size)) ** 0.5))
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if misc.is_main_process():
wandb.run.finish()
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
# load data from FSC147
data_path = Path(args.data_path)
anno_file = data_path / args.anno_file
data_split_file = data_path / args.data_split_file
im_dir = data_path / args.im_dir
gt_dir = data_path / args.gt_dir
class_file = data_path / args.class_file
with open(anno_file) as f:
annotations = json.load(f)
with open(data_split_file) as f:
data_split = json.load(f)
class_dict = {}
with open(class_file) as f:
for line in f:
key = line.split()[0]
val = line.split()[1:]
class_dict[key] = val
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)