forked from yuhaoliu7456/Diff-Plugin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
430 lines (338 loc) · 21.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import os
import math
import logging
import argparse
from pathlib import Path
from tqdm.auto import tqdm
import torch
import torch.utils.checkpoint
import torch.nn.functional as F
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed, save
import diffusers
from diffusers.optimization import get_scheduler
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
import transformers
from transformers import CLIPVisionModel
from transformers.image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
from val import log_validation
from utils import save_random_states
from dataset.dataset import make_train_dataset, collate_fn
from modules import TPBNet, SCBNet
from utils import get_latest_checkpoint, save_args, code_backup
logger = get_logger(__name__)
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a Diff-Plugin training script.")
parser.add_argument('--project_path', type=str, required=True, default=None)
parser.add_argument('--data_root', type=str, required=True, default=None)
parser.add_argument("--pretrained_model_name_or_path",type=str,default="CompVis/stable-diffusion-v1-4",required=False,)
parser.add_argument("--clip_path",type=str,default="openai/clip-vit-large-patch14",required=False,)
parser.add_argument("--output_dir",type=str,default="./results/test",)
parser.add_argument("--cache_dir",type=str,default="./cache",)
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
parser.add_argument("--resolution",type=int,default=512,)
parser.add_argument("--revision",type=str,default=None,required=False,)
parser.add_argument("--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader.")
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument("--max_train_steps",type=int,default=None,)
parser.add_argument("--checkpointing_steps",type=int,default=10,)
parser.add_argument("--checkpoints_total_limit",type=int,default=None,)
parser.add_argument("--resume_from_checkpoint",type=str,default=None,)
parser.add_argument("--gradient_accumulation_steps",type=int,default=1,)
parser.add_argument("--learning_rate",type=float,default=1e-5,)
parser.add_argument("--scale_lr",action="store_true",default=True,)
parser.add_argument("--lr_scheduler",type=str,default="constant",)
parser.add_argument("--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler.")
parser.add_argument("--lr_num_cycles",type=int,default=1,)
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
parser.add_argument("--dataloader_num_workers",type=int,default=4,)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--logging_dir",type=str,default="logs",)
parser.add_argument("--allow_tf32",action="store_true",)
parser.add_argument("--report_to",type=str,default="tensorboard",)
parser.add_argument("--mixed_precision",type=str,default=None,choices=["no", "fp16", "bf16"],)
parser.add_argument("--set_grads_to_none",action="store_true",)
parser.add_argument("--train_data_file_list",type=str,default='data/train/derain.csv',)
parser.add_argument("--validation_image",type=str,default=["/scratch/yuhliu9/Dataset/DeRain/mixtest/R100L/input/rain-002.png"],nargs="+",)
parser.add_argument("--validation_steps",type=int,default=10,)
parser.add_argument("--num_inference_steps",type=int,default=20,help=("diffusion steps for inference process"),)
parser.add_argument("--tracker_project_name",type=str,default="diff-plugin", help="the name of dataset/task, e.g., derain, desnow")
parser.add_argument("--used_clip_vision_layers",type=int,default=24,)
parser.add_argument("--used_clip_vision_global",action="store_true",default=False,)
parser.add_argument("--down_block_types", type=str, nargs="+", default="CrossAttnDownBlock2D",)
parser.add_argument("--block_out_channels", type=int, nargs="+", default=320)
parser.add_argument("--load_weights_from_unet", action="store_true", default=False, help='when change plugin position, this will be false')
parser.add_argument("--num_cross_proj_layers", type=int, default=2, help='the number of projection layers for cross-att')
parser.add_argument("--clip_v_dim", type=int, default=1024, choices=[768,1024], help='the dim of last layer of the pre-trained clip-v')
parser.add_argument("--use_data_aug", action="store_true", default=False, help="use data augmentation or not")
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
return args
def main(args):
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
logging_dir=logging_dir,
project_config=accelerator_project_config,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
save_args(args)
code_backup(args)
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(os.path.join(args.output_dir, "visuals"), exist_ok=True)
# import correct text encoder class
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision)
# define the openai clip visual encoder
image_encoder = CLIPVisionModel.from_pretrained(args.clip_path)
tpb_net = TPBNet(num_cross_proj_layers=args.num_cross_proj_layers, clip_v_dim=args.clip_v_dim)
backup_unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision)
# -------
# used for the scb_net
if type(args.down_block_types) != list:
args.down_block_types = [args.down_block_types]
if type(args.block_out_channels) != list:
args.block_out_channels = [args.block_out_channels]
backup_unet.config.down_block_types = args.down_block_types
backup_unet.config.block_out_channels = args.block_out_channels
# -------
scb_net = SCBNet.from_unet(backup_unet, load_weights_from_unet=args.load_weights_from_unet)
vae.requires_grad_(False)
unet.requires_grad_(False)
scb_net.train()
tpb_net.train()
# Check that all trainable models are in full precision
low_precision_error_string = (
" Please make sure to always have all model weights in full float32 precision when starting training - even if"
" doing mixed precision training, copy of the weights should still be float32.")
if accelerator.unwrap_model(scb_net).dtype != torch.float32:
raise ValueError(f"SCB loaded as datatype {accelerator.unwrap_model(scb_net).dtype}. {low_precision_error_string}")
# Enable TF32 for faster training on Ampere GPUs,
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.learning_rate = (args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes)
logger.info('----------The true learning rate is {} ----------'.format(args.learning_rate))
# Optimizer creation
optimizer_class = torch.optim.AdamW
params_to_optimize = []
params_to_optimize.append({'params': scb_net.parameters(), 'lr': args.learning_rate})
params_to_optimize.append({'params': tpb_net.parameters(), 'lr': args.learning_rate})
assert len(params_to_optimize) > 0, "No trainable parameters found. Make sure to have at least one of the models enabled."
optimizer = optimizer_class(params_to_optimize, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon,)
# dataset and dataloader
train_dataset = make_train_dataset(args, accelerator)
train_dataloader = torch.utils.data.DataLoader(train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size, num_workers=args.dataloader_num_workers,)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
"""
When the gradient_accumulation_steps option is used, the max_train_steps will be automatically calculated
according to the number of epochs and the length of the training dataset
"""
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
# scheduler can be obtained from diffusers.optimization
# Prepare everything with our `accelerator`.
optimizer, train_dataloader, lr_scheduler, scb_net, tpb_net = accelerator.prepare(optimizer, train_dataloader, lr_scheduler, scb_net, tpb_net )
# For mixed precision training we cast the vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
vae.to(accelerator.device, dtype=weight_dtype)
unet.to(accelerator.device, dtype=weight_dtype)
image_encoder.to(accelerator.device, dtype=weight_dtype)
scb_net.to(accelerator.device, dtype=weight_dtype)
tpb_net.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
tracker_config = dict(vars(args))
# tensorboard cannot handle list types for config
tracker_config.pop("validation_image")
tracker_config.pop("down_block_types")
tracker_config.pop("block_out_channels")
accelerator.init_trackers(args.tracker_project_name, config=tracker_config)
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
path = get_latest_checkpoint(args.output_dir)
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
initial_global_step = 0
else:
accelerator.print(f"Resuming from checkpoint {path}")
if os.path.exists(args.resume_from_checkpoint):
accelerator.load_state(args.resume_from_checkpoint)
print('load_state successfully-----------from: ', args.resume_from_checkpoint)
else:
# copy the checkpoint to the output_dir and do necessary changes
accelerator.load_state(os.path.join(args.output_dir, path))
print('load_state successfully-----------from: ', os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1]) # for example, checkpoint-1000
initial_global_step = global_step * args.gradient_accumulation_steps
first_epoch = global_step // num_update_steps_per_epoch
else:
initial_global_step = 0
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
logger.info("***** -------------Note the code for accelerator.accumulate----------------- *****")
logger.info("***** -------------Note the code for accelerator.accumulate----------------- *****")
logger.info("***** -------------Note the code for accelerator.accumulate----------------- *****")
for epoch in range(first_epoch, args.num_train_epochs):
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(scb_net) and accelerator.accumulate(tpb_net):
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
noise = torch.randn_like(latents) # Sample noise that we'll add to the latents
bsz = latents.shape[0]
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# TPB
image_mean = torch.tensor(OPENAI_CLIP_MEAN).view(1, 3, 1, 1).to(accelerator.device,
dtype=weight_dtype)
image_std = torch.tensor(OPENAI_CLIP_STD).view(1, 3, 1, 1).to(accelerator.device,
dtype=weight_dtype)
normalized_pixel_values = (batch["conditioning_pixel_values"].to(dtype=weight_dtype) + 1.0) / 2.0
normalized_pixel_values = torch.nn.functional.interpolate(normalized_pixel_values, size=(224, 224), mode="bilinear", align_corners=False)
normalized_pixel_values = (normalized_pixel_values - image_mean) / image_std
clip_visual_input = image_encoder(normalized_pixel_values, output_attentions=True, output_hidden_states=True)
visual_prompt_guidance = tpb_net(clip_visual_input,
use_global=args.used_clip_vision_global,
layer_ids=args.used_clip_vision_layers,)
# SCB
content_image = batch["conditioning_pixel_values"].to(dtype=weight_dtype)
scb_cond = vae.config.scaling_factor * torch.chunk(vae.quant_conv(vae.encoder(content_image)), 2, dim=1)[0]
down_block_res_samples = scb_net(
noisy_latents,
timesteps,
encoder_hidden_states=visual_prompt_guidance,
cond_img=scb_cond,
return_dict=False,
)
# Predict the noise
model_pred = unet(
noisy_latents,
timesteps,
encoder_hidden_states=visual_prompt_guidance,
down_block_additional_residuals=down_block_res_samples,
).sample
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(scb_net.parameters(), args.max_grad_norm)
accelerator.clip_grad_norm_(tpb_net.parameters(), args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=args.set_grads_to_none)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process:
if global_step % args.checkpointing_steps == 0 or global_step == 1:
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
os.makedirs(save_path, exist_ok=True)
save_random_states(logger, save_path)
if global_step != 1:
save(optimizer.state_dict(), os.path.join(save_path, 'optimizer.bin'))
logger.info(f"Optimizer state saved in {os.path.join(save_path, 'optimizer.bin')}")
save(lr_scheduler.state_dict(), os.path.join(save_path, 'scheduler.bin'))
logger.info(f"Scheduler state saved in {os.path.join(save_path, 'scheduler.bin')}")
# if torch.cuda.device_count() > 1 and :
# scb_net.module.save_pretrained(os.path.join(save_path, 'scb_net'))
# else:
scb_net.save_pretrained(os.path.join(save_path, 'scb_net'))
logger.info(f"Saved scb_net to {save_path}")
save({'model': tpb_net.state_dict()}, os.path.join(save_path, 'tpb_net.pt'))
logger.info(f"Saved tpb_net to {save_path}")
logger.info(f"Saved state to {save_path}")
if global_step % args.validation_steps == 0:
log_validation(logger, vae, unet, image_encoder, scb_net, tpb_net, args, accelerator, global_step)
scb_net.train()
tpb_net.train()
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)