-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain5.py
464 lines (390 loc) · 22.9 KB
/
train5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#!/usr/bin/env python3
import time
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
from torch import nn
from torch.nn.utils.rnn import pack_padded_sequence
from models5_fusion import *
from transformer4 import *
from datasets import *
from utils import *
from nltk.translate.bleu_score import corpus_bleu
import argparse
import codecs
import numpy as np
from torch.optim.lr_scheduler import StepLR
def train(args, train_loader, encoder, decoder, criterion, encoder_optimizer,encoder_lr_scheduler, decoder_optimizer, decoder_lr_scheduler, epoch):
"""
Performs one epoch's training.
:param train_loader: DataLoader for training data
:param encoder: encoder model
:param decoder: decoder model
:param criterion: loss layer
:param encoder_optimizer: optimizer to update encoder's weights (if fine-tuning)
:param decoder_optimizer: optimizer to update decoder's weights
:param epoch: epoch number
"""
decoder.train() # train mode (dropout and batchnorm is used)
encoder.train()
batch_time = AverageMeter() # forward prop. + back prop. time
data_time = AverageMeter() # data loading time
losses = AverageMeter() # loss (per word decoded)
top5accs = AverageMeter() # top5 accuracy
start = time.time()
# Batches
best_bleu4 = 0. # BLEU-4 score right now
steps_since_improvement = 0
final_args = {"emb_dim": args.emb_dim,
"attention_dim": args.attention_dim,
"decoder_dim": args.decoder_dim,
"n_heads": args.n_heads,
"dropout": args.dropout,
"decoder_mode": args.decoder_mode,
"attention_method": args.attention_method,
"encoder_layers": args.encoder_layers,
"decoder_layers": args.decoder_layers}
for i, (imgs, caps, caplens) in enumerate(train_loader):
data_time.update(time.time() - start)
# Move to GPU, if available
# print(caps)
# print(caplens)
imgs = imgs.to(device)
caps = caps.to(device)
caplens = caplens.to(device)
# Forward prop.
imgs = encoder(imgs)
# imgs: [batch_size, 14, 14, 2048]
# caps: [batch_size, 52]
# caplens: [batch_size, 1]
if args.decoder_mode == 'lstm':
scores, caps_sorted, decode_lengths, sort_ind = decoder(imgs, caps, caplens)
else:
scores, caps_sorted, decode_lengths, alphas, sort_ind = decoder(imgs, caps, caplens)
# Since we decoded starting with <start>, the targets are all words after <start>, up to <end>
targets = caps_sorted[:, 1:]
# Remove timesteps that we didn't decode at, or are pads
# pack_padded_sequence is an easy trick to do this
scores = pack_padded_sequence(scores, decode_lengths, batch_first=True).data
targets = pack_padded_sequence(targets, decode_lengths, batch_first=True).data
# print(scores.size())
# print(targets.size())
# Calculate loss
loss = criterion(scores, targets)
# Add doubly stochastic attention regularization
# Second loss, mentioned in paper "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention"
# https://arxiv.org/abs/1502.03044
# In section 4.2.1 Doubly stochastic attention regularization: We know the weights sum to 1 at a given timestep.
# But we also encourage the weights at a single pixel p to sum to 1 across all timesteps T.
# This means we want the model to attend to every pixel over the course of generating the entire sequence.
# Therefore, we want to minimize the difference between 1 and the sum of a pixel's weights across all timesteps.
if args.decoder_mode == "lstm_attention":
loss += args.alpha_c * ((1. - alphas.sum(dim=1)) ** 2).mean()
elif args.decoder_mode == "transformer" or args.decoder_mode == "transformer_decoder":
dec_alphas = alphas["dec_enc_attns"]
alpha_trans_c = args.alpha_c / (args.n_heads * args.decoder_layers)
for layer in range(args.decoder_layers): # args.decoder_layers = len(dec_alphas)
cur_layer_alphas = dec_alphas[layer] # [batch_size, n_heads, 52, 196]
for h in range(args.n_heads):
cur_head_alpha = cur_layer_alphas[:, h, :, :]
loss += alpha_trans_c * ((1. - cur_head_alpha.sum(dim=1)) ** 2).mean()
# Back prop.
decoder_optimizer.zero_grad()
if encoder_optimizer is not None:
encoder_optimizer.zero_grad()
loss.backward()
# Clip gradients
if args.grad_clip is not None:
clip_gradient(decoder_optimizer, args.grad_clip)
if encoder_optimizer is not None:
clip_gradient(encoder_optimizer, args.grad_clip)
# Update weights
decoder_optimizer.step()
decoder_lr_scheduler.step()
if encoder_optimizer is not None:
encoder_optimizer.step()
encoder_lr_scheduler.step()
# Keep track of metrics
top5 = accuracy(scores, targets, 5)
losses.update(loss.item(), sum(decode_lengths))
top5accs.update(top5, sum(decode_lengths))
batch_time.update(time.time() - start)
start = time.time()
if i % args.print_freq == 0:
# print('TIME: ', time.strftime("%m-%d %H : %M : %S", time.localtime(time.time())))
print("Epoch: {}/{} step: {}/{} Loss: {} AVG_Loss: {} Top-5 Accuracy: {} Batch_time: {}s".format(epoch+0, args.epochs, i+0, len(train_loader), losses.val, losses.avg, top5accs.val, batch_time.val))
def validate(args, val_loader, encoder, decoder, criterion):
"""
Performs one epoch's validation.
:param val_loader: DataLoader for validation data.
:param encoder: encoder model
:param decoder: decoder model
:param criterion: loss layer
:return: score_dict {'Bleu_1': 0., 'Bleu_2': 0., 'Bleu_3': 0., 'Bleu_4': 0., 'METEOR': 0., 'ROUGE_L': 0., 'CIDEr': 1.}
"""
decoder.eval() # eval mode (no dropout or batchnorm)
if encoder is not None:
encoder.eval()
batch_time = AverageMeter()
losses = AverageMeter()
top5accs = AverageMeter()
start = time.time()
references = list() # references (true captions) for calculating BLEU-4 score
hypotheses = list() # hypotheses (predictions)
# explicitly disable gradient calculation to avoid CUDA memory error
with torch.no_grad():
# Batches
for i, (imgs, caps, caplens, allcaps) in enumerate(val_loader):
# Move to device, if available
imgs = imgs.to(device)
caps = caps.to(device)
caplens = caplens.to(device)
# Forward prop.
if encoder is not None:
imgs = encoder(imgs)
if args.decoder_mode == 'lstm':
scores, caps_sorted, decode_lengths, sort_ind = decoder(imgs, caps, caplens)
else:
scores, caps_sorted, decode_lengths, alphas, sort_ind = decoder(imgs, caps, caplens)
# Since we decoded starting with <start>, the targets are all words after <start>, up to <end>
targets = caps_sorted[:, 1:]
# Remove timesteps that we didn't decode at, or are pads
# pack_padded_sequence is an easy trick to do this
scores_copy = scores.clone()
scores = pack_padded_sequence(scores, decode_lengths, batch_first=True).data
targets = pack_padded_sequence(targets, decode_lengths, batch_first=True).data
# Calculate loss
loss = criterion(scores, targets)
# Add doubly stochastic attention regularization
if args.decoder_mode == "lstm_attention":
loss += args.alpha_c * ((1. - alphas.sum(dim=1)) ** 2).mean()
elif args.decoder_mode == "transformer" or args.decoder_mode =="transformer_decoder":
dec_alphas = alphas["dec_enc_attns"]
alpha_trans_c = args.alpha_c / (args.n_heads * args.decoder_layers)
for layer in range(args.decoder_layers): # args.decoder_layers = len(dec_alphas)
cur_layer_alphas = dec_alphas[layer] # [batch_size, n_heads, 52, 196]
for h in range(args.n_heads):
cur_head_alpha = cur_layer_alphas[:, h, :, :]
loss += alpha_trans_c * ((1. - cur_head_alpha.sum(dim=1)) ** 2).mean()
# Keep track of metrics
losses.update(loss.item(), sum(decode_lengths))
top5 = accuracy(scores, targets, 5)
top5accs.update(top5, sum(decode_lengths))
batch_time.update(time.time() - start)
start = time.time()
# Store references (true captions), and hypothesis (prediction) for each image
# If for n images, we have n hypotheses, and references a, b, c... for each image, we need -
# references = [[ref1a, ref1b, ref1c], [ref2a, ref2b], ...], hypotheses = [hyp1, hyp2, ...]
# References
allcaps = allcaps[sort_ind] # because images were sorted in the decoder
for j in range(allcaps.shape[0]):
img_caps = allcaps[j].tolist()
img_captions = list(
map(lambda c: [w for w in c if w not in {word_map['<start>'], word_map['<pad>']}],
img_caps)) # remove <start> and pads
references.append(img_captions)
# Hypotheses
_, preds = torch.max(scores_copy, dim=2)
preds = preds.tolist()
temp_preds = list()
for j, p in enumerate(preds):
temp_preds.append(preds[j][:decode_lengths[j]]) # remove pads
preds = temp_preds
hypotheses.extend(preds)
assert len(references) == len(hypotheses)
# Calculate BLEU1~4, METEOR, ROUGE_L, CIDEr scores
print('Validation:')
metrics = get_eval_score(references, hypotheses)
# print("EVA LOSS: {} TOP-5 Accuracy {} BLEU-1 {} BLEU2 {} BLEU3 {} BLEU-4 {} METEOR {} ROUGE_L {} CIDEr {}".format
# (losses.avg, top5accs.avg, metrics["Bleu_1"], metrics["Bleu_2"], metrics["Bleu_3"], metrics["Bleu_4"],
# metrics["METEOR"],metrics["ROUGE_L"], metrics["CIDEr"]))
print('\n')
return metrics
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Image_Captioning')
# Data parameters
parser.add_argument('--data_folder', default="./data/",help='folder with data files saved by create_input_files.py.')
parser.add_argument('--data_name', default="RSICD_5_cap_per_img_5_min_word_freq",help='base name shared by data files.')
# Model parameters
parser.add_argument('--emb_dim', type=int, default=512, help='dimension of word embeddings.')#300
parser.add_argument('--attention_dim', type=int, default=512, help='dimension of attention linear layers.')
parser.add_argument('--decoder_dim', type=int, default=512, help='dimension of decoder RNN.')
parser.add_argument('--n_heads', type=int, default=8, help='Multi-head attention in Transformer.')
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
# FIXME:note to change these
parser.add_argument('--encoder_mode', default="resnet50", help='which model does encoder use?') # inception_v3 or vgg16 or vgg19 or resnet50 or resnet101 or resnet152
parser.add_argument('--decoder_mode', default="transformer", help='which model does decoder use?') # lstm or lstm_attention or transformer or transformer_decoder
parser.add_argument('--attention_method', default="ByPixel", help='which attention method to use?') # ByPixel or ByChannel
parser.add_argument('--encoder_layers', type=int, default=3, help='the number of layers of encoder in Transformer.')
parser.add_argument('--decoder_layers', type=int, default=3, help='the number of layers of decoder in Transformer.')
# Training parameters
parser.add_argument('--epochs', type=int, default=100, help='number of epochs to train for (if early stopping is not triggered).')
parser.add_argument('--stop_criteria', type=int, default=6, help='training stop if epochs_since_improvement == stop_criteria')
parser.add_argument('--batch_size', type=int, default=32, help='batch_size')
parser.add_argument('--print_freq', type=int, default=100, help='print training/validation stats every __ batches.')
parser.add_argument('--workers', type=int, default=0, help='for data-loading; right now, only 0 works with h5pys in windows.')
parser.add_argument('--encoder_lr', type=float, default=1e-4, help='learning rate for encoder if fine-tuning.')
parser.add_argument('--decoder_lr', type=float, default=1e-4, help='learning rate for decoder.')
parser.add_argument('--grad_clip', type=float, default=5., help='clip gradients at an absolute value of.')
parser.add_argument('--alpha_c', type=float, default=1., help='regularization parameter for doubly stochastic attention, as in the paper.')
parser.add_argument('--fine_tune_encoder', type=bool, default=True, help='whether fine-tune encoder or not')
parser.add_argument('--fine_tune_embedding', type=bool, default=False, help='whether fine-tune word embeddings or not')
parser.add_argument('--checkpoint', default=None, help='path to checkpoint, None if none.')
parser.add_argument('--embedding_path', default=None, help='path to pre-trained word Embedding.')
args = parser.parse_args()
for encoder_layers, decoder_layers in [(3,3)]: #,,(0,6),(2,2),
args.encoder_layers = encoder_layers
args.decoder_layers = decoder_layers
# args.encoder_mode = encoder_mode
# load checkpoint, these parameters can't be modified
final_args = {"emb_dim": args.emb_dim,
"attention_dim": args.attention_dim,
"decoder_dim": args.decoder_dim,
"n_heads": args.n_heads,
"dropout": args.dropout,
"decoder_mode": args.decoder_mode,
"attention_method": args.attention_method,
"encoder_layers": args.encoder_layers,
"decoder_layers": args.decoder_layers}
start_epoch = 0
best_bleu4 = 0. # BLEU-4 score right now
epochs_since_improvement = 0 # keeps track of number of epochs since there's been an improvement in validation BLEU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # sets device for model and PyTorch tensors
cudnn.benchmark = True # set to true only if inputs to model are fixed size; otherwise lot of computational overhead
# print(device)
# Read word map
word_map_file = os.path.join(args.data_folder, 'WORDMAP_' + args.data_name + '.json')
with open(word_map_file, 'r') as j:
word_map = json.load(j)
# Initialize / load checkpoint
if args.checkpoint is None:
# Encoder
encoder = CNN_Encoder(NetType=args.encoder_mode, attention_method=args.attention_method)
encoder.fine_tune(args.fine_tune_encoder)
encoder_optimizer = torch.optim.Adam(params=filter(lambda p: p.requires_grad, encoder.parameters()),
lr=args.encoder_lr) if args.fine_tune_encoder else None
encoder_lr_scheduler = StepLR(encoder_optimizer,step_size=600,gamma=0.9)
# set the encoder_dim
encoder_dim = 512 if args.encoder_mode == 'vgg16' else 512 if args.encoder_mode == 'vgg19' \
else 2048 # FIXME: encoder_dim depends on the model
# different Decoder
if args.decoder_mode == "transformer":
decoder = Transformer(vocab_size=len(word_map),
embed_dim=args.emb_dim,
encoder_layers=args.encoder_layers,
decoder_layers=args.decoder_layers,
dropout=args.dropout,
attention_method=args.attention_method,
n_heads=args.n_heads)
decoder_optimizer = torch.optim.Adam(params=filter(lambda p: p.requires_grad, decoder.parameters()),
lr=args.decoder_lr)
decoder_lr_scheduler = StepLR(decoder_optimizer,step_size=600,gamma=0.9)
# load pre-trained word embedding
if args.embedding_path is not None:
all_word_embeds = {}
for i, line in enumerate(codecs.open(args.embedding_path, 'r', 'utf-8')):
s = line.strip().split()
all_word_embeds[s[0]] = np.array([float(i) for i in s[1:]])
# change emb_dim
args.emb_dim = list(all_word_embeds.values())[-1].size
word_embeds = np.random.uniform(-np.sqrt(0.06), np.sqrt(0.06), (len(word_map), args.emb_dim))
for w in word_map:
if w in all_word_embeds:
word_embeds[word_map[w]] = all_word_embeds[w]
elif w.lower() in all_word_embeds:
word_embeds[word_map[w]] = all_word_embeds[w.lower()]
else:
# <pad> <start> <end> <unk>
embedding_i = torch.ones(1, args.emb_dim)
torch.nn.init.xavier_uniform_(embedding_i)
word_embeds[word_map[w]] = embedding_i
word_embeds = torch.FloatTensor(word_embeds).to(device)
decoder.load_pretrained_embeddings(word_embeds)
decoder.fine_tune_embeddings(args.fine_tune_embedding)
print('Loaded {} pre-trained word embeddings.'.format(len(word_embeds)))
else:
checkpoint = torch.load(args.checkpoint, map_location=str(device))
start_epoch = checkpoint['epoch'] + 1
epochs_since_improvement = checkpoint['epochs_since_improvement']
best_bleu4 = checkpoint['metrics']["Bleu_4"]
encoder = checkpoint['encoder']
encoder_optimizer = checkpoint['encoder_optimizer']
decoder = checkpoint['decoder']
decoder_optimizer = checkpoint['decoder_optimizer']
decoder.fine_tune_embeddings(args.fine_tune_embedding)
# load final_args from checkpoint
final_args = checkpoint['final_args']
for key in final_args.keys():
args.__setattr__(key, final_args[key])
if args.fine_tune_encoder is True and encoder_optimizer is None:
print("Encoder_Optimizer is None, Creating new Encoder_Optimizer!")
encoder.fine_tune(args.fine_tune_encoder)
encoder_optimizer = torch.optim.Adam(params=filter(lambda p: p.requires_grad, encoder.parameters()),
lr=args.encoder_lr)
# Move to GPU, if available
decoder = decoder.to(device)
encoder = encoder.to(device)
print("Encoder_mode:{} Decoder_mode:{}".format(args.encoder_mode,args.decoder_mode))
print("encoder_layers {} decoder_layers {} n_heads {} dropout {} attention_method {} encoder_lr {} "
"decoder_lr {} alpha_c {}".format(args.encoder_layers, args.decoder_layers, args.n_heads, args.dropout,
args.attention_method, args.encoder_lr, args.decoder_lr, args.alpha_c))
# print(encoder)
# print(decoder)
# Loss function
criterion = nn.CrossEntropyLoss().to(device)
# Custom dataloaders
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# normalize = transforms.Normalize(mean=[0.399, 0.410, 0.371], std=[0.151, 0.138, 0.134])
# normalize = transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
# pin_memory: If True, the data loader will copy Tensors into CUDA pinned memory before returning them.
# If your data elements are a custom type, or your collate_fn returns a batch that is a custom type.
train_loader = torch.utils.data.DataLoader(
CaptionDataset(args.data_folder, args.data_name, 'TRAIN', transform=transforms.Compose([normalize])),
batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
CaptionDataset(args.data_folder, args.data_name, 'TEST', transform=transforms.Compose([normalize])),
batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)
# Epochs
for epoch in range(start_epoch, args.epochs):
# Decay learning rate if there is no improvement for 5 consecutive epochs, and terminate training after 25
# 8 20
if epochs_since_improvement == args.stop_criteria:
print("the model has not improved in the last {} epochs".format(args.stop_criteria))
break
if epochs_since_improvement > 0 and epochs_since_improvement % 3 == 0:
adjust_learning_rate(decoder_optimizer, 0.8)
if args.fine_tune_encoder and encoder_optimizer is not None:
print(encoder_optimizer)
# adjust_learning_rate(encoder_optimizer, 0.8)
# One epoch's training
train(args,
train_loader=train_loader,
# val_loader=val_loader,
encoder=encoder,
decoder=decoder,
criterion=criterion,
encoder_optimizer=encoder_optimizer,
encoder_lr_scheduler=encoder_lr_scheduler,
decoder_optimizer=decoder_optimizer,
decoder_lr_scheduler=decoder_lr_scheduler,
epoch=epoch)
# One epoch's validation
metrics = validate(args,
val_loader=val_loader,
encoder=encoder,
decoder=decoder,
criterion=criterion)
recent_bleu4 = metrics["Bleu_4"]
# Check if there was an improvement
is_best = recent_bleu4 > best_bleu4
best_bleu4 = max(recent_bleu4, best_bleu4)
if not is_best:
epochs_since_improvement += 1
print("\nEpochs since last improvement: %d\n" % (epochs_since_improvement,))
else:
epochs_since_improvement = 0
# Save checkpoint
checkpoint_name = args.encoder_mode + '_' + args.decoder_mode + '_' + str(args.encoder_layers) + '_' + str(args.decoder_layers) + '_Res+MLAT+fusion' #_tengxun_aggregation
save_checkpoint(checkpoint_name, epoch, epochs_since_improvement, encoder, decoder, encoder_optimizer,
decoder_optimizer, metrics, is_best, final_args)