-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonevone.m
140 lines (126 loc) · 4.96 KB
/
onevone.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
function [Acc,SVs,preY,trainTime,testTime,proList,svm,maxLabel,objFuc] = onevone(trainData,trainLabel,testData,testLabel,nuclass,class,kertype,C,type,isCluster,item,para)
%支持多分类
% struct SVM;
epsilon = 1e-6;
nn = 0;
[~,nTrain] = size(trainData);
[mTest,nTest] = size(testData);
svsList = zeros(nTrain,1); %用来记录支持向量的个数,非0即支持向量
trainTime = 0;
testTime = 0;
testYList = zeros(nuclass,nTest);
for ii = 0:nuclass-2
for jj = (ii+1):nuclass-1
objFuc = zeros(item,1);
tic;
nn = nn + 1;
iclass = class(ii+1);
jclass = class(jj+1);
iindex = find(trainLabel==iclass);
%one v one
jindex = find(trainLabel==jclass);
itrainLabel = trainLabel(iindex) - trainLabel(iindex) + 1;%one为1
jtrainLabel = trainLabel(jindex) - trainLabel(jindex) - 1;%others为-1
pN = length(iindex); nN = length(jindex);
if isCluster
itrainData = trainData(:,iindex);
jtrainData = trainData(:,jindex);
[clustLabel1] = dbscan(itrainData',kertype);
[clustLabel2] = dbscan(jtrainData',kertype);
ijtrainData = [trainData(:,iindex(clustLabel1==1)),trainData(:,jindex(clustLabel2==1))];
itrainLabel = trainLabel(iindex(clustLabel1==1)) - trainLabel(iindex(clustLabel1==1)) + 1;%one为1
jtrainLabel = trainLabel(jindex(clustLabel2==1)) - trainLabel(jindex(clustLabel2==1)) - 1;%All为-1
ijtrainLabel = [itrainLabel,jtrainLabel];
else
itrainData = trainData(:,iindex);
jtrainData = trainData(:,jindex);
ijtrainLabel = [itrainLabel,jtrainLabel];
ijtrainData = [itrainData,jtrainData];
end
options=optimset;
options.LargerScale='off';
options.Display='off';
n=length(ijtrainLabel);
H=(ijtrainLabel'*ijtrainLabel).*kernel(ijtrainData,ijtrainData,kertype);
f=-ones(n,1);
A=[];
b=[];
Aeq=ijtrainLabel;
beq=0;
lb=zeros(n,1);
ub=C;
a0=zeros(n,1);
[a,fval,eXitflag,output,lambda]=quadprog(H,f,A,b,Aeq,beq,lb,ub,a0,options);
%求b
[svm,sv_label] = calculate_rho(a,ijtrainData',ijtrainLabel',C,kertype);
if isCluster
itrainLabel = trainLabel(iindex) - trainLabel(iindex) + 1;%one为1
jtrainLabel = trainLabel(jindex) - trainLabel(jindex) - 1;%All为-1
itrainData = trainData(:,iindex);
jtrainData = trainData(:,jindex);
ijtrainLabel = [itrainLabel,jtrainLabel];
ijtrainData = [itrainData,jtrainData];
end
i = 1;
n=length(ijtrainLabel);
H=(ijtrainLabel'*ijtrainLabel).*kernel(ijtrainData,ijtrainData,kertype);
f=-ones(n,1);
A=[];
b=[];
Aeq=ijtrainLabel;
beq=0;
lb=zeros(n,1);
a0=zeros(n,1);
[di,~] = getSD(svm, ijtrainData, ijtrainLabel, kertype,type,pN,nN);
while(i<=item)
ub=di.*(C*ones(n,1));
[a,fval,eXitflag,output,lambda]=quadprog(H,f,A,b,Aeq,beq,lb,ub,a0,options);
[svm,sv_label] = calculate_rho(a,ijtrainData',ijtrainLabel',C,kertype);
[ei] = getEi(svm, ijtrainData, ijtrainLabel, kertype);
%converage
w2 = norm(svm.w,2)^2;
softloss = di.*ei';
%objFuc(i) = 0.5*w2 + C * sum(softloss);
objFuc(i) = getObjFun(a,trainData,trainLabel,kertype,C,softloss);
if(item == 1)
break;
end
if(i>1 && abs(objFuc(i)-objFuc(i-1))<=epsilon && objFuc(i)<=objFuc(i-1))
i=i
objFuc((i+1):item) = objFuc(i);
break;
elseif(i>1 && objFuc(i)>objFuc(i-1))
i = i -1;
objFuc((i+1):item) = objFuc(i);
svm = svmsvm;
sv_labels = sv_label;
break;
else
[di] = getS(ei,type,pN,nN,para);
%stepsize = 1;
svmsvm = svm;
%sv_labels = sv_label;
i = i + 1;
end
end
svsList(sv_label(:,:))=1;%单次支持向量
trainTime = trainTime + toc;
tic;
result=svmTest_multiclass(svm,testData,kertype);
testTime = testTime + toc;
%testYList(nn,:) = result.score;
indPreYmin = find(result.score<0);
testYList((jj+1),indPreYmin) = testYList((jj+1),indPreYmin) + 1;
indPreYmax = find(result.score>0);
testYList((ii+1),indPreYmax) = testYList((ii+1),indPreYmax) + 1;
end
[maxLabel,maxIndex] = max(testYList);
testY = class(maxIndex);
%得到精度
preY = testY;
Acc = size(find(testLabel==preY))/size(testLabel);
%Acc = Gmean(preY,testLabel);
svm.svnum = length(find(svsList==1));
SVs = svm.svnum;
proList = softmax(testYList);
end