-
Notifications
You must be signed in to change notification settings - Fork 109
/
inf_vqa.py
181 lines (154 loc) · 6.54 KB
/
inf_vqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
run inference of VQA for submission
"""
import argparse
import json
import os
from os.path import exists
from time import time
import torch
from torch.utils.data import DataLoader
from apex import amp
from horovod import torch as hvd
import numpy as np
from cytoolz import concat
from data import (TokenBucketSampler, PrefetchLoader,
DetectFeatLmdb, TxtTokLmdb, VqaEvalDataset, vqa_eval_collate)
from model.vqa import UniterForVisualQuestionAnswering
from utils.logger import LOGGER
from utils.distributed import all_gather_list
from utils.misc import Struct
from utils.const import BUCKET_SIZE, IMG_DIM
def main(opts):
hvd.init()
n_gpu = hvd.size()
device = torch.device("cuda", hvd.local_rank())
torch.cuda.set_device(hvd.local_rank())
rank = hvd.rank()
LOGGER.info("device: {} n_gpu: {}, rank: {}, "
"16-bits training: {}".format(
device, n_gpu, hvd.rank(), opts.fp16))
hps_file = f'{opts.output_dir}/log/hps.json'
model_opts = Struct(json.load(open(hps_file)))
# train_examples = None
ans2label_file = f'{opts.output_dir}/ckpt/ans2label.json'
ans2label = json.load(open(ans2label_file))
label2ans = {label: ans for ans, label in ans2label.items()}
# load DBs and image dirs
eval_img_db = DetectFeatLmdb(opts.img_db,
model_opts.conf_th, model_opts.max_bb,
model_opts.min_bb, model_opts.num_bb,
opts.compressed_db)
eval_txt_db = TxtTokLmdb(opts.txt_db, -1)
eval_dataset = VqaEvalDataset(len(ans2label), eval_txt_db, eval_img_db)
# Prepare model
if exists(opts.checkpoint):
ckpt_file = opts.checkpoint
else:
ckpt_file = f'{opts.output_dir}/ckpt/model_step_{opts.checkpoint}.pt'
checkpoint = torch.load(ckpt_file)
model = UniterForVisualQuestionAnswering.from_pretrained(
f'{opts.output_dir}/log/model.json', checkpoint,
img_dim=IMG_DIM, num_answer=len(ans2label))
model.to(device)
if opts.fp16:
model = amp.initialize(model, enabled=True, opt_level='O2')
sampler = TokenBucketSampler(eval_dataset.lens, bucket_size=BUCKET_SIZE,
batch_size=opts.batch_size, droplast=False)
eval_dataloader = DataLoader(eval_dataset,
batch_sampler=sampler,
num_workers=opts.n_workers,
pin_memory=opts.pin_mem,
collate_fn=vqa_eval_collate)
eval_dataloader = PrefetchLoader(eval_dataloader)
val_log, results, logits = evaluate(model, eval_dataloader, label2ans,
opts.save_logits)
result_dir = f'{opts.output_dir}/results_test'
if not exists(result_dir) and rank == 0:
os.makedirs(result_dir)
all_results = list(concat(all_gather_list(results)))
if opts.save_logits:
all_logits = {}
for id2logit in all_gather_list(logits):
all_logits.update(id2logit)
if hvd.rank() == 0:
with open(f'{result_dir}/'
f'results_{opts.checkpoint}_all.json', 'w') as f:
json.dump(all_results, f)
if opts.save_logits:
np.savez(f'{result_dir}/logits_{opts.checkpoint}_all.npz',
**all_logits)
@torch.no_grad()
def evaluate(model, eval_loader, label2ans, save_logits=False):
LOGGER.info("start running evaluation...")
model.eval()
n_ex = 0
st = time()
results = []
logits = {}
for i, batch in enumerate(eval_loader):
qids = batch['qids']
scores = model(batch, compute_loss=False)
answers = [label2ans[i]
for i in scores.max(dim=-1, keepdim=False
)[1].cpu().tolist()]
for qid, answer in zip(qids, answers):
results.append({'answer': answer, 'question_id': int(qid)})
if save_logits:
scores = scores.cpu()
for i, qid in enumerate(qids):
logits[qid] = scores[i].half().numpy()
if i % 100 == 0 and hvd.rank() == 0:
n_results = len(results)
n_results *= hvd.size() # an approximation to avoid hangs
LOGGER.info(f'{n_results}/{len(eval_loader.dataset)} '
'answers predicted')
n_ex += len(qids)
n_ex = sum(all_gather_list(n_ex))
tot_time = time()-st
val_log = {'valid/ex_per_s': n_ex/tot_time}
model.train()
LOGGER.info(f"evaluation finished in {int(tot_time)} seconds "
f"at {int(n_ex/tot_time)} examples per second")
return val_log, results, logits
def compute_score_with_logits(logits, labels):
logits = torch.max(logits, 1)[1] # argmax
one_hots = torch.zeros(*labels.size(), device=labels.device)
one_hots.scatter_(1, logits.view(-1, 1), 1)
scores = (one_hots * labels)
return scores
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--txt_db",
default=None, type=str,
help="The input train corpus. (LMDB)")
parser.add_argument("--img_db",
default=None, type=str,
help="The input train images.")
parser.add_argument('--compressed_db', action='store_true',
help='use compressed LMDB')
parser.add_argument("--checkpoint",
default=None, type=str,
help="can be the path to binary or int number (step)")
parser.add_argument("--batch_size",
default=8192, type=int,
help="number of tokens in a batch")
parser.add_argument("--output_dir", default=None, type=str,
help="The output directory of the training command")
parser.add_argument("--save_logits", action='store_true',
help="Whether to save logits (for making ensemble)")
# Prepro parameters
# device parameters
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead "
"of 32-bit")
parser.add_argument('--n_workers', type=int, default=4,
help="number of data workers")
parser.add_argument('--pin_mem', action='store_true',
help="pin memory")
args = parser.parse_args()
main(args)