-
Notifications
You must be signed in to change notification settings - Fork 1
/
GM12878_TAD_level_local_interactions.R
254 lines (239 loc) · 15.7 KB
/
GM12878_TAD_level_local_interactions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# TAD_level_local_interactions
# 201170412
# wupz
# 1.1 read CNV data
source("../scripts/FindCNVBlock.R")
source("../scripts/GetCNVofRegions.R")
source("../scripts/FindLocalHicMatrix.R")
GM12878_CNV_40kb <- read.table("/lustre/user/liclab/wupz/DNA_seq/CNV_final/GM12878_CNV/ERR091571.sam_ratio.txt",
stringsAsFactors = F, header = T)
head(GM12878_CNV_40kb)
dim(GM12878_CNV_40kb)
GM12878_CNV_40kb_block <- FindCNVBlock(freec_ratio = GM12878_CNV_40kb)
head(GM12878_CNV_40kb_block )
dim(GM12878_CNV_40kb_block )
# 1.2 find the gain or loss cnv regions
tmp_dim <- dim(GM12878_CNV_40kb_block)[1] #
tmp_cnv <- GM12878_CNV_40kb_block$score
length(tmp_cnv)
cnv_gain_loss_state <- vector() # used for store the state of gain or loss
for (i in 1:(length(tmp_cnv)-2) ) {
if ( (GM12878_CNV_40kb_block$chrom[i+1] == GM12878_CNV_40kb_block$chrom[i]) & (GM12878_CNV_40kb_block$chrom[i+1] == GM12878_CNV_40kb_block$chrom[i+2]) ) { # the same chrom
if ( (tmp_cnv[i+1] < tmp_cnv[i]) & (tmp_cnv[i+1] < tmp_cnv[i+2]) ) { # loss fragment
cnv_gain_loss_state[i] <- "Loss"
} else if ( (tmp_cnv[i+1] > tmp_cnv[i]) & (tmp_cnv[i+1] > tmp_cnv[i+2]) ) { # gain fragment
cnv_gain_loss_state[i] <- "Gain"
} else {
cnv_gain_loss_state[i] <- "Others"
}
} else {
cnv_gain_loss_state[i] <- "Others" # start or end of a chromo
}
}
length(cnv_gain_loss_state) # [1] 428
cnv_gain_loss_state <- c("Others", cnv_gain_loss_state, "Others")
GM12878_CNV_40kb_block <- cbind(GM12878_CNV_40kb_block, cnv_gain_loss_state = cnv_gain_loss_state)
class(GM12878_CNV_40kb_block)
dim(GM12878_CNV_40kb_block)
GM12878_CNV_40kb_block$chrom[GM12878_CNV_40kb_block$chrom=="X"] <- 23
GM12878_CNV_40kb_block$chrom[GM12878_CNV_40kb_block$chrom=="Y"] <- 24
sum(GM12878_CNV_40kb_block$chromEnd - GM12878_CNV_40kb_block$chromStart <= 120000 )
png(filename = "Length of GM12878 CNV blocks.png", width = 1024, height = 1024 )
par(cex = 3, lwd = 3, mgp = c(2.5,1,0))
plot(density(GM12878_CNV_40kb_block$chromEnd-GM12878_CNV_40kb_block$chromStart), log = "x",
xlab = "Length of CNV blocks (bp)", main = "Length of GM12878 CNV blocks")
# lines(density(RPMI8226_CNV_40kb_block$chromEnd-RPMI8226_CNV_40kb_block$chromStart), col = "red")
dev.off()
write.table(x = GM12878_CNV_40kb_block, file = "GM12878_CNV_40kb_block.bed", quote = F, sep = "\t", row.names = F, col.names = F)
# 1.3 For each TAD, calculate region starts and ends and CNVs of this TAD
## use 1...23 as chromosome names
tmp_GM12878_CNV_40kb <- GM12878_CNV_40kb
tmp_GM12878_CNV_40kb$Chromosome[GM12878_CNV_40kb$Chromosome == "X"] <- 23
tmp_GM12878_CNV_40kb$Chromosome[GM12878_CNV_40kb$Chromosome == "Y"] <- 24
# read insulation score data
GM12878_insulation_score <- list()
GM12878_insulation_score_tad <- list()
for ( i in 1:23 ) {
tmp_chr <- paste0("chr", i)
GM12878_insulation_score[[i]] <- read.table(paste( "/lustre/user/liclab/lirf/Project/hic/data.2015.6.24/release12.2/resolution_40k/cis/TAD_boundary/",
tmp_chr, "_", tmp_chr, "_40k_normalmatrix.txt.is1000001.ids240001.insulation", sep = ""), header = T)
GM12878_insulation_score_tad[[i]] <- read.table(paste( "/lustre/user/liclab/lirf/Project/hic/data.2015.6.24/release12.2/resolution_40k/cis/TAD_boundary/",
tmp_chr, "_", tmp_chr, "_40k_normalmatrix.txt.is1000001.ids240001.insulation.boundaries", sep = ""), header = T)
}
GM12878_TAD_filter_bed <- vector()
GM12878_TAD_bed <- vector()
for ( i in 1:23 ) {
print(paste0("chr", i) )
tmp_GM12878_insulation_score <- GM12878_insulation_score[[i]]
tmp_GM12878_insulation_score_tad <- GM12878_insulation_score_tad[[i]]
# construct TAD file with bed format
tmp_GM12878_TAD_bed <- cbind(chr = i,
TAD_start = tmp_GM12878_insulation_score_tad$end[-length(tmp_GM12878_insulation_score_tad$end)] - 1,
TAD_end = tmp_GM12878_insulation_score_tad$end[-1] - 40001)
dim(tmp_GM12878_TAD_bed) # Check numbers
tmp_GM12878_TAD_bed <- cbind(tmp_GM12878_TAD_bed, cn_mean = apply(X = tmp_GM12878_TAD_bed, MARGIN = 1, FUN = GetCNVofRegions, cnv_files = tmp_GM12878_CNV_40kb, methods = "mean"))
tmp_GM12878_TAD_bed <- cbind(tmp_GM12878_TAD_bed, cn_median = apply(X = tmp_GM12878_TAD_bed, MARGIN = 1, FUN = GetCNVofRegions, cnv_files = tmp_GM12878_CNV_40kb, methods = "median"))
GM12878_TAD_bed <- rbind(GM12878_TAD_bed, tmp_GM12878_TAD_bed)
# keep TAD which length over 160 kb
tmp_GM12878_TAD_filter_bed <- tmp_GM12878_TAD_bed[ as.numeric(tmp_GM12878_TAD_bed[, 3]) - as.numeric(tmp_GM12878_TAD_bed[, 2]) >= 160000, ]
dim(tmp_GM12878_TAD_filter_bed) # Check numbers
# calculate CNV at TAD level
head(tmp_GM12878_TAD_filter_bed )
GM12878_TAD_filter_bed <- rbind(GM12878_TAD_filter_bed, tmp_GM12878_TAD_filter_bed)
}
# check data
dim( GM12878_TAD_bed )
dim( GM12878_TAD_filter_bed )
png(filename = "GM12878 Length of raw TADs.png", width = 1024, height = 1024)
par(cex = 3, lwd = 3, mgp = c(2.5,1,0))
plot(table(as.numeric(GM12878_TAD_bed[, 3])-as.numeric(GM12878_TAD_bed[, 2])), xlim = c(0, 3000000), type = "l",
xlab = "Length of \"raw\" TADs (bp)", main = "GM12878, distribution of TADs' length", ylab = "Counts")
dev.off()
png(filename = "GM12878 Length of filtered TADs.png", width = 1024, height = 1024)
par(cex = 3, lwd = 3, mgp = c(2.5,1,0))
plot(table(as.numeric(GM12878_TAD_filter_bed[, 3])-as.numeric(GM12878_TAD_filter_bed[, 2])), xlim = c(0, 3000000), type = "l",
xlab = "Length of \"filtered\" TADs (bp)", main = "GM12878, distribution of TADs' length", ylab = "Counts")
dev.off()
write.table( x = GM12878_TAD_bed, file = "GM12878_TAD_raw.bed", quote = F, sep = "\t", col.names = F, row.names = F )
write.table( x = GM12878_TAD_filter_bed, file = "GM12878_TAD_filter.bed", quote = F, sep = "\t", col.names = F, row.names = F )
## found local intra-chromosome interactions in each TAD
# read Hi-C data of GM12878, 40kb
GM12878_hic_ice_matrix <- list()
GM12878_hic_raw_matrix <- list()
for (i in 1:23) {
print(paste0("Read GM12878 ICE Hi-C matrix of chr ", i) )
GM12878_hic_ice_matrix[[i]] <- list()
GM12878_hic_ice_matrix[[i]][[i]] <- read.table(paste0( "/lustre/user/liclab/lirf/Project/hic/data.2015.6.24/release12.2/resolution_40k/cis/ice_normalization/chr",
i, "_40k_normalized_matrix.txt") )
print(paste0("Read GM12878 raw Hi-C matrix of chr ", i) )
GM12878_hic_raw_matrix[[i]] <- list()
GM12878_hic_raw_matrix[[i]][[i]] <- read.table(paste0( "/lustre/user/liclab/lirf/Project/hic/data.2015.6.24/release12.2/resolution_40k/cis/raw/chr",
i, "_40k_rawmatrix.txt") )
}
save.image(file = "20170510.RData")
save(GM12878_hic_raw_matrix, file = "GM12878_hic_raw_matrix_40kb.RData")
save(GM12878_hic_ice_matrix, file = "GM12878_hic_ICE_matrix_40kb.RData")
# calculate TAD-TAD level interaction, use median interaction as represent
GM12878_TAD_filter_HiC_matrix_raw <- list()
GM12878_TAD_filter_HiC_matrix_ice <- list()
for (i in 1:23) {
print(paste("chr", i))
tmp_GM12878_TAD_filter_bed <- GM12878_TAD_filter_bed[GM12878_TAD_filter_bed[, 1] == i, ]
GM12878_TAD_filter_HiC_matrix_raw[[i]] <- matrix(0, nrow = dim(tmp_GM12878_TAD_filter_bed)[1], ncol = dim(tmp_GM12878_TAD_filter_bed)[1])
GM12878_TAD_filter_HiC_matrix_ice[[i]] <- matrix(0, nrow = dim(tmp_GM12878_TAD_filter_bed)[1], ncol = dim(tmp_GM12878_TAD_filter_bed)[1])
tmp_GM12878_hic_raw <- as.matrix( GM12878_hic_raw_matrix[[i]][[i]] )
tmp_GM12878_hic_ice <- as.matrix( GM12878_hic_ice_matrix[[i]][[i]] )
diag(tmp_GM12878_hic_raw) <- diag( tmp_GM12878_hic_raw )/2
diag(tmp_GM12878_hic_ice) <- diag( tmp_GM12878_hic_ice )/2
print("Calculate median TAD-TAD interactions")
for (j in 1:dim(tmp_GM12878_TAD_filter_bed)[1] ) {
for (k in i:dim(tmp_GM12878_TAD_filter_bed)[1] ) {
print(paste("Raw Hi-C matrix, TAD", j, "with", "TAD", k))
GM12878_TAD_filter_HiC_matrix_raw[[i]][j, k] <- median( as.vector(as.numeric( FindLocalHicMatrix(region1 = tmp_GM12878_TAD_filter_bed[j, ],
region2 = tmp_GM12878_TAD_filter_bed[k, ],
matrix = tmp_GM12878_hic_raw,
resolution = 40000) ) ),
na.rm = T)
print(paste("Raw Hi-C matrix, TAD", j, "with", "TAD", k))
GM12878_TAD_filter_HiC_matrix_ice[[i]][j, k] <- median( as.vector(as.numeric( FindLocalHicMatrix(region1 = tmp_GM12878_TAD_filter_bed[j, ],
region2 = tmp_GM12878_TAD_filter_bed[k, ],
matrix = tmp_GM12878_hic_ice,
resolution = 40000) ) ),
na.rm = T)
}
}
}
GM12878_TAD_local_intra_hic_matrix_raw <- vector()
GM12878_TAD_local_intra_hic_matrix_ice <- vector()
for ( i in 1:23 ) {
GM12878_TAD_local_intra_hic_matrix_raw <- c(GM12878_TAD_local_intra_hic_matrix_raw, diag(GM12878_TAD_filter_HiC_matrix_raw[[i]]))
GM12878_TAD_local_intra_hic_matrix_ice <- c(GM12878_TAD_local_intra_hic_matrix_ice, diag(GM12878_TAD_filter_HiC_matrix_ice[[i]]))
}
tmp_idx <- ( GM12878_TAD_filter_bed[, 5] == 1 ) | ( GM12878_TAD_filter_bed[, 5] == 2 ) | ( GM12878_TAD_filter_bed[, 5] == 3 )
hist(GM12878_TAD_filter_bed[, 5], breaks = seq(1:9)-1.5 )
png(filename = "GM12878 raw Hi-C matrix 40 kb Local interactions within a TAD.png", width = 1024, height = 1024)
par(cex = 3, lwd = 3, mgp = c(2.5,1,0))
box_local_median_raw <- boxplot(GM12878_TAD_local_intra_hic_matrix_raw[tmp_idx] ~ GM12878_TAD_filter_bed[tmp_idx, 4],
main = "Local interactions within a TAD\nraw Hi-C matrix, 40 kb",
xlab = "Copy Number",
ylab = "Local interaction scores",
pch = ".",
col = c("blue", "green", "red") )
dev.off()
png(filename = "GM12878 ICE Hi-C matrix 40 kb Local interactions within a TAD.png", width = 1024, height = 1024)
par(cex = 3, lwd = 3, mgp = c(2.5,1,0))
box_local_median_ice <- boxplot( GM12878_TAD_local_intra_hic_matrix_ice[tmp_idx] ~ GM12878_TAD_filter_bed[tmp_idx, 5],
main = "Local interactions within a TAD\nICE Hi-C matrix, 40 kb",
xlab = "Copy Number",
ylab = "Local interaction scores",
pch = ".",
col = c("blue", "green", "red") )
dev.off()
# 1.4 GM12878, Read up- and down-stream TAD regions and calculate its interactions
# 1.4.1 Read files of the upstream or downstream closest TADs to the CNVs
GM12878_CNV_40kb_upTAD <- read.table("/lustre/user/liclab/wupz/dosageEffect/201703_nc_revise/FISH_TAD_CNV_interactions/GM12878_CNV_nearestUpstream_TAD.bed",
stringsAsFactors = F)
GM12878_CNV_40kb_downTAD <- read.table("/lustre/user/liclab/wupz/dosageEffect/201703_nc_revise/FISH_TAD_CNV_interactions/GM12878_CNV_nearestDownstream_TAD.bed",
stringsAsFactors = F)
GM12878_CNV_40kb_nearest_TAD <- cbind(GM12878_CNV_40kb_upTAD, GM12878_CNV_40kb_downTAD[, 8:12])
head(GM12878_CNV_40kb_nearest_TAD)
dim(GM12878_CNV_40kb_nearest_TAD)
# 1.4.2 calculate the upstreamTAD-downstreamTAD interactions
GM12878_CNV_40kb_nearest_TAD_interactions <- numeric(length = dim(GM12878_CNV_40kb_nearest_TAD)[1])
tmp_chr <- "chr1"
tmp_GM12878_hic <- read.table( paste( "/lustre/user/liclab/lirf/Project/hic/data.2015.6.24/release12.2/resolution_40k/cis/ice_normalization/",
tmp_chr, "_40k_normalized_matrix.txt", sep = "") )
for( i in 1:dim(GM12878_CNV_40kb_nearest_TAD)[1] ) {
# change hi-c data according to chromosomes
if ( tmp_chr != paste0("chr", GM12878_CNV_40kb_upTAD[i, 1] ) ) {
tmp_chr <- paste0("chr", GM12878_CNV_40kb_upTAD[i, 1] )
tmp_GM12878_hic <- read.table( paste( "/lustre/user/liclab/lirf/Project/hic/data.2015.6.24/release12.2/resolution_40k/cis/ice_normalization/",
tmp_chr, "_40k_normalized_matrix.txt", sep = "") )
}
if( GM12878_CNV_40kb_upTAD[i, 8]!= "." & GM12878_CNV_40kb_downTAD[i, 8] != "." ) { # not include the border
GM12878_CNV_40kb_nearest_TAD_interactions[i] <- median( as.vector( as.numeric( FindLocalHicMatrix(region1 = GM12878_CNV_40kb_upTAD[i, 8:10],
region2 = GM12878_CNV_40kb_downTAD[i, 8:10],
matrix = tmp_GM12878_hic, resolution = 40000) ) ) )
}
}
## 1.4.3 Generate two random TADs of the same CNV block and find its interactions
### 1.4.3.1 choose large CNV blocks
tmp_index <- GM12878_CNV_40kb_block$chromEnd - GM12878_CNV_40kb_block$chromStart >= 5000000
sum( tmp_index ) # [1] 121
head( GM12878_CNV_40kb_block[tmp_index,] )
### 1.4.3.2 select two TADs from the chose CNV blocks
for( tmp_chr in GM12878_CNV_40kb_block[tmp_index, 1] ) {
}
## 1.4.3 color calculation and distance calculation
tmp_col <- ifelse(GM12878_CNV_40kb_upTAD[, 7] == "Gain", "red", ifelse(GM12878_CNV_40kb_upTAD[, 7] == "Loss", "blue", "green"))
tmp_up_distance <- abs(GM12878_CNV_40kb_upTAD[, 12])
tmp_down_distance <- abs(GM12878_CNV_40kb_downTAD[, 12]) # tmp_distance < 260000 & tmp_distance_2 < 260000 &
tmp_index <- GM12878_CNV_40kb_downTAD[, 8] != "." & GM12878_CNV_40kb_upTAD[, 8] != "."
tmp_distance_3 <- apply(GM12878_CNV_40kb_downTAD[tmp_index, c(9,10)], 1, mean) - apply(GM12878_CNV_40kb_upTAD[tmp_index, c(9,10)], 1, mean)
## 1.4.4 Statistic figures
### Interactions vs. distance
png(filename = "GM12878_Interactions_upTAD_downTAD_of_CNV_vs_distance.png", width = 1024, height = 1024)
par(cex = 2.5, mgp = c(1, 0.5, 0))
plot(GM12878_CNV_40kb_nearest_TAD_interactions[tmp_index] ~ tmp_distance_3, col = tmp_col[tmp_index])
dev.off()
### Interactions (all) vs. cnv state
png(filename = "GM12878_Interactions_upTAD_downTAD_of_CNV_vs_cnvState.png", width = 1024, height = 1024)
par(cex = 2.5, mgp = c(1, 0.5, 0))
boxplot( GM12878_CNV_40kb_nearest_TAD_interactions[tmp_index] ~ GM12878_CNV_40kb_upTAD[tmp_index, 7],
col = c("red", "blue", "green"))
dev.off()
### Interactions (non-zero) vs. cnv state
png(filename = "GM12878_nonZero_Interactions_upTAD_downTAD_of_CNV_vs_cnvState.png", width = 1024, height = 1024)
par(cex = 2.5, mgp = c(1, 0.5, 0))
boxplot( GM12878_CNV_40kb_nearest_TAD_interactions[tmp_index][GM12878_CNV_40kb_nearest_TAD_interactions[tmp_index]!=0] ~ GM12878_CNV_40kb_upTAD[tmp_index, 7][GM12878_CNV_40kb_nearest_TAD_interactions[tmp_index]!=0],
col = c("red", "blue", "green"))
dev.off()
tmp_interactions <- GM12878_CNV_40kb_nearest_TAD_interactions[tmp_index][GM12878_CNV_40kb_nearest_TAD_interactions[tmp_index]!=0]
tmp_cnv_state <- GM12878_CNV_40kb_upTAD[tmp_index, 7][GM12878_CNV_40kb_nearest_TAD_interactions[tmp_index]!=0]
t.test(tmp_interactions[tmp_cnv_state=="Loss"], tmp_interactions[tmp_cnv_state=="Others"])
t.test(tmp_interactions[tmp_cnv_state=="Gain"], tmp_interactions[tmp_cnv_state=="Others"])
### Distance vs. cnv state
png(filename = "GM12878_nonZero_Interactions_upTAD_downTAD_of_CNV_vs_cnvState.png", width = 1024, height = 1024)
par(cex = 2.5, mgp = c(1, 0.5, 0))
boxplot(tmp_distance_3 ~ GM12878_CNV_40kb_upTAD[tmp_index, 7], col = c("red", "blue", "green"))
dev.off()