-
Notifications
You must be signed in to change notification settings - Fork 6
/
config.py
67 lines (46 loc) · 2.04 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
from easydict import EasyDict as edict
import time
import torch
# init
__C = edict()
cfg = __C
#------------------------------TRAIN------------------------
__C.SEED = 3035 # random seed, for reporduction
__C.DATASET = 'SHHA' # dataset selection: SHHA, SHHB, UCF50, QNRF, WE
if __C.DATASET == 'UCF50':# only for UCF50
from datasets.UCF50.setting import cfg_data
__C.VAL_INDEX = cfg_data.VAL_INDEX
if __C.DATASET == 'GCC':# only for GCC
from datasets.GCC.setting import cfg_data
__C.VAL_MODE = cfg_data.VAL_MODE
__C.NET = 'MobileCount' # net selection: MobileCount, MobileCountx1_25, MobileCountx2
__C.PRE_GCC = False # use the pretrained model on GCC dataset
__C.PRE_GCC_MODEL = './exp/04-06_16-19_GCC_CSRNet_0.0001_rd/all_ep_130_mae_34.9_mse_71.9.pth' # path to model
__C.GPU_ID = [0] # sigle gpu: [0], [1] ...; multi gpus: [0,1]
# learning rate settings
__C.LR = 1e-4 # learning rate
__C.LR_DECAY = 0.995 # decay rate
__C.LR_DECAY_START = -1 # when training epoch is more than it, the learning rate will be begin to decay
__C.NUM_EPOCH_LR_DECAY = 1 # decay frequency
__C.MAX_EPOCH = 500
# print
__C.PRINT_FREQ = 10
now = time.strftime("%m-%d_%H-%M", time.localtime())
__C.EXP_NAME = now \
+ '_' + __C.DATASET \
+ '_' + __C.NET \
+ '_' + str(__C.LR)
if __C.DATASET == 'UCF50':
__C.EXP_NAME += '_' + str(__C.VAL_INDEX)
if __C.DATASET == 'GCC':
__C.EXP_NAME += '_' + __C.VAL_MODE
__C.EXP_PATH = './exp' # the path of logs, checkpoints, and current codes
#------------------------------VAL------------------------
__C.VAL_DENSE_START = 1
__C.VAL_FREQ = 10 # Before __C.VAL_DENSE_START epoches, the freq is set as __C.VAL_FREQ
#------------------------------VIS------------------------
__C.VISIBLE_NUM_IMGS = 1 # must be 1 for training images with the different sizes
#================================================================================
#================================================================================
#================================================================================