-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunClassifier.m
55 lines (52 loc) · 1.92 KB
/
runClassifier.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
function [ decisionStatistic ] = runClassifier( features,class )
%UNTITLED5 Summary of this function goes here
% Detailed explanation goes here
switch class.class
case{'FLD'}
total = size(features,1);
decisionStatistic = zeros(total,1);
w = class.sw*(class.m1-class.m0)';
for i = 1:total
decisionStatistic(i) = w'*features(i,:)';
end
case{'DLRT'}
a = size(class.features,1);
D = size(class.features,2);
n1 = sum(class.target); n0 = a-n1;
for i = 1:length(features)
testset = repmat(features(i,:),a,1);
diff = abs(testset - class.features).^2;
dist = sum(diff,2);
[Y,I] = sort(dist);
targetAfterSort = class.target(I);
dist0 = Y(targetAfterSort == 0);
dist1 = Y(targetAfterSort == 1);
k0 = dist0(class.k);
k1 = dist1(class.k);
decisionStatistic(i) = log(n0/n1)+D*(log(k0)-log(k1));
end
case{'Bayes'}
total = size(features,1)
decisionStatistic = zeros(total,1);
for i = 1:total
diff1 = (features(i,:) - class.miu1);
diff0 = (features(i,:) - class.miu0);
decisionStatistic(i) = [-1/2*diff1*pinv(class.cov1)*diff1'-1/2*log(det(class.cov1))+log(class.p1)]-...
[-1/2*diff0*pinv(class.cov0)*diff0'-1/2*log(det(class.cov0))+log(class.p0)];
end
case{'KNN'}
for i = 1 : size (features,2)
norm(:,i) = (features(:,i) - class.mean(i))/class.var(i);
end
a = size(class.feature,1)
for i = 1:length(norm)
testset = repmat(norm(i,:),a,1);
diff = abs(testset - class.feature).^2;
dist = sum(diff,2);
[Y,I] = sort(dist);
neiborInd = I(1:class.k);
neibor = class.target(neiborInd);
decisionStatistic(i) = sum(neibor)/class.k;
end
end
end