Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

0.8.1转写速度非常慢 #227

Open
syazyz opened this issue Sep 19, 2024 · 4 comments
Open

0.8.1转写速度非常慢 #227

syazyz opened this issue Sep 19, 2024 · 4 comments

Comments

@syazyz
Copy link

syazyz commented Sep 19, 2024

4080显卡,速度可能不到原来的1%,堪比用CPU跑。但看显卡占用又跑满了,找不到原因。是否没有正确调用到打包里的PyTorch和TensorFlow所致?

fasterwhispergui.log如下:

None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.
None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.
The torchaudio backend is switched to 'soundfile'. Note that 'sox_io' is not supported on Windows.
torchvision is not available - cannot save figures
The torchaudio backend is switched to 'soundfile'. Note that 'sox_io' is not supported on Windows.

faster_whisper_GUI: 0.8.1
==========2024-09-19_18:15:41==========
==========Start==========

current computer language region-format: zh_CN
language: zh

==========2024-09-19_18:16:57==========
==========LoadModel==========

-model_size_or_path: E:/Utilities/Huggingface_Model/models--Systran--faster-whisper-large-v3/snapshots/edaa852ec7e145841d8ffdb056a99866b5f0a478
-device: cuda
-device_index: 0
-compute_type: float32
-cpu_threads: 4
-num_workers: 1
-download_root: C:/Users/syazyz/.cache/huggingface/hub
-local_files_only: False
-use_v3_model: True

Load over
E:/Utilities/Huggingface_Model/models--Systran--faster-whisper-large-v3/snapshots/edaa852ec7e145841d8ffdb056a99866b5f0a478
max_length: 448
num_samples_per_token: 320
time_precision: 0.02
tokens_per_second: 50
input_stride: 2

[Using V3 model, modify number of mel-filters to 128]

==========2024-09-19_18:18:05==========
==========Process==========

redirect std output
vad_filter : True
-threshold : 0.2
-min_speech_duration_ms : 250
-max_speech_duration_s : inf
-min_silence_duration_ms : 2000
-speech_pad_ms : 800
Transcribes options:
-audio : ['E:/VideoDownload/you-get/겜스트GAMEST/20240912 - 감스트 즉흥으로 열린 노래자랑, 과연 참가자 실력은? [24.9.11].mkv']
-language : None
-task : True
-beam_size : 1
-best_of : 5
-patience : 1.0
-length_penalty : 1.0
-temperature : [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
-compression_ratio_threshold : 1.4
-log_prob_threshold : -10.0
-no_speech_threshold : 0.9
-condition_on_previous_text : False
-initial_prompt : None
-prefix : None
-suppress_blank : True
-suppress_tokens : [-1]
-without_timestamps : False
-max_initial_timestamp : 1.0
-word_timestamps : True
-prepend_punctuations : "'“¿([{-
-append_punctuations : "'.。,,!!??::”)]}、
-repetition_penalty : 1.0
-no_repeat_ngram_size : 0
-prompt_reset_on_temperature : 0.5
-max_new_tokens : None
-chunk_length : 30.0
-clip_mode : 0
-clip_timestamps : 0
-hallucination_silence_threshold : 0.5
-hotwords :
-language_detection_threshold : None
-language_detection_segments : 1
create transcribe process with 1 workers
start transcribe process

@CheshireCC
Copy link
Owner

转写速度和显存有一定关系,显存不够的时候会调用系统内存作为共享显存来进行缓冲,速度就慢了,系统内存比显存慢得多,解决办法就是把计算精度换成 16 位或者 8位,这样占用显存少了数据就能直接进显存了

@lowy-git
Copy link

我猜……可能你也爆显存了,看一眼log吧

@syazyz
Copy link
Author

syazyz commented Sep 21, 2024

faster_whisper080.log
faster_whisper081.log
fasterwhispergui080.log
fasterwhispergui081.log

试跑了一下0.8.1,log文件为faster_whisper081.log和fasterwhispergui081.log。作为对比,用同样的文件在0.8.0也跑了一次,对应的log文件是faster_whisper080.log和fasterwhispergui080.log。
0.8.1的log里没有发现提示显存占满的信息。我为了确认还专门开了GPU-Z和hwinfo两个监控软件看显存占用状态,0.8.1全程都在8.8G到11G左右,和0.8.0一模一样。而4080有16G显存,远远未到占满的程度。
这段音频长度为2分18秒,0.8.0用了11秒完成,而0.8.1用了50多秒。

@hyominli
Copy link

hyominli commented Nov 2, 2024

确实慢,感觉没用到显卡一样

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

5 participants
@syazyz @hyominli @CheshireCC @lowy-git and others