NOTE: THIS LIBRARY IS NOT YET FORMALLY REVIEWED FOR SECURITY
NOTE: THIS LIBRARY WAS SHIFTED TO THE IETF BLS SPECIFICATION ON 7/16/20
Implements BLS signatures with aggregation using relic toolkit for cryptographic primitives (pairings, EC, hashing) according to the IETF BLS RFC with these curve parameters for BLS12-381.
Features:
- Non-interactive signature aggregation following IETF specification
- Works on Windows, Mac, Linux, BSD
- Efficient verification using Proof of Posssesion (only one pairing per distinct message)
- Aggregate public keys and private keys
- EIP-2333 key derivation (including unhardened BIP-32-like keys)
- Key and signature serialization
- Batch verification
- Python bindings
- Pure python bls12-381 and signatures
- JavaScript bindings
This library uses minimum public key sizes (MPL). A G2Element is a signature (96 bytes), and a G1Element is a public key (48 bytes). A private key is a 32 byte integer. There are three schemes: Basic, Augmented, and ProofOfPossession. Augmented should be enough for most use cases, and ProofOfPossession can be used where verification must be fast.
#include "bls.hpp"
using namespace bls;
// Example seed, used to generate private key. Always use
// a secure RNG with sufficient entropy to generate a seed (at least 32 bytes).
vector<uint8_t> seed = {0, 50, 6, 244, 24, 199, 1, 25, 52, 88, 192,
19, 18, 12, 89, 6, 220, 18, 102, 58, 209, 82,
12, 62, 89, 110, 182, 9, 44, 20, 254, 22};
PrivateKey sk = AugSchemeMPL().KeyGen(seed);
G1Element pk = sk.GetG1Element();
vector<uint8_t> message = {1, 2, 3, 4, 5}; // Message is passed in as a byte vector
G2Element signature = AugSchemeMPL().Sign(sk, message);
// Verify the signature
bool ok = AugSchemeMPL().Verify(pk, message, signature);
vector<uint8_t> skBytes = sk.Serialize();
vector<uint8_t> pkBytes = pk.Serialize();
vector<uint8_t> signatureBytes = signature.Serialize();
cout << Util::HexStr(skBytes) << endl; // 32 bytes printed in hex
cout << Util::HexStr(pkBytes) << endl; // 48 bytes printed in hex
cout << Util::HexStr(signatureBytes) << endl; // 96 bytes printed in hex
// Takes vector of 32 bytes
PrivateKey skc = PrivateKey::FromByteVector(skBytes);
// Takes vector of 48 bytes
pk = G1Element::FromByteVector(pkBytes);
// Takes vector of 96 bytes
signature = G2Element::FromByteVector(signatureBytes);
// Generate some more private keys
seed[0] = 1;
PrivateKey sk1 = AugSchemeMPL().KeyGen(seed);
seed[0] = 2;
PrivateKey sk2 = AugSchemeMPL().KeyGen(seed);
vector<uint8_t> message2 = {1, 2, 3, 4, 5, 6, 7};
// Generate first sig
G1Element pk1 = sk1.GetG1Element();
G2Element sig1 = AugSchemeMPL().Sign(sk1, message);
// Generate second sig
G1Element pk2 = sk2.GetG1Element();
G2Element sig2 = AugSchemeMPL().Sign(sk2, message2);
// Signatures can be non-interactively combined by anyone
G2Element aggSig = AugSchemeMPL().Aggregate({sig1, sig2});
ok = AugSchemeMPL().AggregateVerify({pk1, pk2}, {message, message2}, aggSig);
seed[0] = 3;
PrivateKey sk3 = AugSchemeMPL().KeyGen(seed);
G1Element pk3 = sk3.GetG1Element();
vector<uint8_t> message3 = {100, 2, 254, 88, 90, 45, 23};
G2Element sig3 = AugSchemeMPL().Sign(sk3, message3);
G2Element aggSigFinal = AugSchemeMPL().Aggregate({aggSig, sig3});
ok = AugSchemeMPL().AggregateVerify({pk1, pk2, pk3}, {message, message2, message3}, aggSigFinal);
// If the same message is signed, you can use Proof of Posession (PopScheme) for efficiency
// A proof of possession MUST be passed around with the PK to ensure security.
G2Element popSig1 = PopSchemeMPL().Sign(sk1, message);
G2Element popSig2 = PopSchemeMPL().Sign(sk2, message);
G2Element popSig3 = PopSchemeMPL().Sign(sk3, message);
G2Element pop1 = PopSchemeMPL().PopProve(sk1);
G2Element pop2 = PopSchemeMPL().PopProve(sk2);
G2Element pop3 = PopSchemeMPL().PopProve(sk3);
ok = PopSchemeMPL().PopVerify(pk1, pop1);
ok = PopSchemeMPL().PopVerify(pk2, pop2);
ok = PopSchemeMPL().PopVerify(pk3, pop3);
G2Element popSigAgg = PopSchemeMPL().Aggregate({popSig1, popSig2, popSig3});
ok = PopSchemeMPL().FastAggregateVerify({pk1, pk2, pk3}, message, popSigAgg);
// Aggregate public key, indistinguishable from a single public key
G1Element popAggPk = pk1 + pk2 + pk3;
ok = PopSchemeMPL().Verify(popAggPk, message, popSigAgg);
// Aggregate private keys
PrivateKey aggSk = PrivateKey::Aggregate({sk1, sk2, sk3});
ok = (PopSchemeMPL().Sign(aggSk, message) == popSigAgg);
HD keys using EIP-2333
// You can derive 'child' keys from any key, to create arbitrary trees. 4 byte indeces are used.
// Hardened (more secure, but no parent pk -> child pk)
PrivateKey masterSk = AugSchemeMPL().KeyGen(seed);
PrivateKey child = AugSchemeMPL().DeriveChildSk(masterSk, 152);
PrivateKey grandChild = AugSchemeMPL().DeriveChildSk(child, 952)
// Unhardened (less secure, but can go from parent pk -> child pk), BIP32 style
G1Element masterPk = masterSk.GetG1Element();
PrivateKey childU = AugSchemeMPL().DeriveChildSkUnhardened(masterSk, 22);
PrivateKey grandchildU = AugSchemeMPL().DeriveChildSkUnhardened(childU, 0);
G1Element childUPk = AugSchemeMPL().DeriveChildPkUnhardened(masterPk, 22);
G1Element grandchildUPk = AugSchemeMPL().DeriveChildPkUnhardened(childUPk, 0);
ok = (grandchildUPk == grandchildU.GetG1Element();
Cmake 3.14+, a c++ compiler, and python3 (for bindings) are required for building.
mkdir build
cd build
cmake ../
cmake --build . -- -j 6
./build/src/runtest
./build/src/runbench
On a 3.5 GHz i7 Mac, verification takes about 1.1ms per signature, and signing takes 1.3ms.
g++ -Wl,-no_pie -std=c++11 -Ibls-signatures/build/_deps/relic-src/include -Ibls-signatures/build/_deps/relic-build/include -Ibls-signatures/src -L./bls-signatures/build/ -l bls yourapp.cpp
We use Libsodium and have GMP as an optional dependency: libsodium gives secure memory
allocation, and GMP speeds up the library by ~ 3x. MPIR is used on Windows via
GitHub Actions instead. To install them, either download them from github and
follow the instructions for each repo, or use a package manager like APT or
brew. You can follow the recipe used to build python wheels for multiple
platforms in .github/workflows/
.
Discussion about this library and other Chinilla related development is in the #dev channel of Chinilla's public Keybase channels.
- Always use vector<uint8_t> for bytes
- Use size_t for size variables
- Uppercase method names
- Prefer static constructors
- Avoid using templates
- Objects allocate and free their own memory
- Use cpplint with default rules
- Use SecAlloc and SecFree when handling secrets
The primary build process for this repository is to use GitHub Actions to
build binary wheels for MacOS, Linux (x64 and aarch64), and Windows and publish
them with a source wheel on PyPi. MacOS ARM64 is supported but not automated
due to a lack of M1 CI runners. See .github/workflows/build.yml
. CMake uses
FetchContent
to download pybind11 for the Python
bindings and relic from a chinilla relic forked repository for Windows. Building
is then managed by cibuildwheel.
Further installation is then available via pip install chinillablspy
e.g. The ci
builds include GMP and a statically linked libsodium.
Contributions are welcome and more details are available in chinilla-blockchain's CONTRIBUTING.md.
The main branch is usually the currently released latest version on PyPI. Note that at times bls-signatures/chinillablspy will be ahead of the release version that chinilla-blockchain requires in it's main/release version in preparation for a new chinilla-blockchain release. Please branch or fork main and then create a pull request to the main branch. Linear merging is enforced on main and merging requires a completed review. PRs will kick off a GitHub actions ci build and analysis of bls-signatures at lgtm.com. Please make sure your build is passing and that it does not increase alerts at lgtm.
The IETF bls draft is followed. Test vectors can also be seen in the python and cpp test files.
The libsodium static library is licensed under the ISC license which requires the following copyright notice.
ISC License
Copyright (c) 2013-2020 Frank Denis <j at pureftpd dot org>
Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
GMP is distributed under the GNU LGPL v3 license
Relic is used with the Apache 2.0 license