-
Notifications
You must be signed in to change notification settings - Fork 4
/
train_transMil_naive.py
236 lines (188 loc) · 10.2 KB
/
train_transMil_naive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torchvision.transforms.functional as VF
from torchvision import transforms
import sys, argparse, os, copy, itertools, glob, datetime
import pandas as pd
import numpy as np
from tqdm import tqdm
from sklearn.utils import shuffle
from sklearn.metrics import roc_curve, roc_auc_score, precision_recall_fscore_support,f1_score
from sklearn.datasets import load_svmlight_file
from collections import OrderedDict
from models.dropout import LinearScheduler
from radam import RAdam
from lookhead import Lookahead
from utils import *
from wsi_dataloader_3 import C16DatasetV3,C16DatasetV4,dropout_patches,C16DatasetV3_tcga
from models.transmil_naive import TransMIL
def train(trainloader, milnet, criterion, optimizer, args):
milnet.train()
total_loss = 0
bc = 0
for batch_id, (feats,label) in enumerate(trainloader):
#feats = bag['feat'].squeeze(2)
#label = bag['label']
bag_feats = feats.cuda()
bag_label = label.cuda()
bag_feats = bag_feats.view(1, -1, args.feats_size)
optimizer.zero_grad()
bag_prediction, _ = milnet(data=bag_feats)
bag_loss = criterion(bag_prediction.view(1, -1), bag_label.view(1, -1))
loss = bag_loss
loss.backward()
optimizer.step()
total_loss = total_loss + loss.item()
sys.stdout.write('\r Training bag [%d/%d] bag loss: %.4f' % (batch_id, len(trainloader), loss.item()))
return total_loss / len(trainloader)
def test(testloader, milnet, criterion, args):
milnet.eval()
# csvs = shuffle(test_df).reset_index(drop=True)
total_loss = 0
test_labels = []
test_predictions = []
with torch.no_grad():
for batch_id, (feats,label) in enumerate(testloader):
# (feats, label)
# bag = bag[0]
#feats = bag['feat'].squeeze(2)
#label = bag['label']
#bag_name = bag['name']
bag_feats = feats.cuda()
bag_label = label.cuda()
# print(bag_label)
# bag_feats = bag_feats.view(-1, args.feats_size)
bag_prediction, _ = milnet(data=bag_feats)
bag_loss = criterion(bag_prediction.view(1,-1),bag_label.view(1,-1))
loss = bag_loss
total_loss = total_loss + loss.item()
sys.stdout.write('\r Testing bag [%d/%d] bag loss: %.4f' % (batch_id, len(testloader), loss.item()))
test_labels.extend([label.squeeze().cpu().numpy()])
# if args.average:
# test_predictions.extend([(0.5*torch.sigmoid(max_prediction)+0.5*torch.sigmoid(bag_prediction)).squeeze().cpu().numpy()])
# else:
# test_predictions.extend([(0.0*torch.sigmoid(max_prediction)+1.0*torch.sigmoid(bag_prediction)).squeeze().cpu().numpy()])
test_predictions.extend([torch.sigmoid(bag_prediction).squeeze().cpu().numpy()])
test_labels = np.array(test_labels)
test_predictions = np.array(test_predictions)
# print(test_labels)
auc_value, _, thresholds_optimal = multi_label_roc(test_labels, test_predictions, args.num_classes, pos_label=1)
if args.num_classes==1:
class_prediction_bag = copy.deepcopy(test_predictions)
class_prediction_bag[test_predictions>=thresholds_optimal[0]] = 1
class_prediction_bag[test_predictions<thresholds_optimal[0]] = 0
test_predictions = class_prediction_bag
test_labels = np.squeeze(test_labels)
else:
for i in range(args.num_classes):
class_prediction_bag = copy.deepcopy(test_predictions[:, i])
class_prediction_bag[test_predictions[:, i]>=thresholds_optimal[i]] = 1
class_prediction_bag[test_predictions[:, i]<thresholds_optimal[i]] = 0
test_predictions[:, i] = class_prediction_bag
bag_score = 0
for i in range(0, len(testloader)):
bag_score = np.array_equal(test_labels[i], test_predictions[i]) + bag_score
avg_score = bag_score / len(testloader)
f1 = f1_score(test_labels,test_predictions,average='macro')
return total_loss / len(testloader), avg_score, auc_value, thresholds_optimal,f1
def multi_label_roc(labels, predictions, num_classes, pos_label=1):
fprs = []
tprs = []
thresholds = []
thresholds_optimal = []
aucs = []
if len(predictions.shape)==1:
predictions = predictions[:, None]
for c in range(0, num_classes):
label = labels[:, c]
prediction = predictions[:, c]
fpr, tpr, threshold = roc_curve(label, prediction, pos_label=1)
fpr_optimal, tpr_optimal, threshold_optimal = optimal_thresh(fpr, tpr, threshold)
c_auc = roc_auc_score(label, prediction)
aucs.append(c_auc)
thresholds.append(threshold)
thresholds_optimal.append(threshold_optimal)
return aucs, thresholds, thresholds_optimal
def optimal_thresh(fpr, tpr, thresholds, p=0):
loss = (fpr - tpr) - p * tpr / (fpr + tpr + 1)
idx = np.argmin(loss, axis=0)
return fpr[idx], tpr[idx], thresholds[idx]
def main():
parser = argparse.ArgumentParser(description='Train DSMIL on 20x patch features learned by SimCLR')
parser.add_argument('--dataroot', default="dataset/c16/imagenet", type=str, help='dataroot for the CAMELYON16 dataset')
parser.add_argument('--backgrd_thres', default=30, type=int, help='background threshold')
parser.add_argument('--num_classes', default=2, type=int, help='Number of output classes [2]')
parser.add_argument('--num_workers', default=1, type=int, help='number of workers used in dataloader [4]')
parser.add_argument('--feats_size', default=512, type=int, help='Dimension of the feature size [512]')
parser.add_argument('--lr', default=2e-4, type=float, help='Initial learning rate [0.0002]')
parser.add_argument('--num_epochs', default=200, type=int, help='Number of total training epochs [40|200]')
parser.add_argument('--gpu_index', type=int, nargs='+', default=(0,), help='GPU ID(s) [0]')
parser.add_argument('--weight_decay', default=1e-5, type=float, help='Weight decay [5e-3]')
parser.add_argument('--dropout_patch', default=0, type=float, help='Patch dropout rate [0]')
parser.add_argument('--dropout_node', default=0, type=float, help='Bag classifier dropout rate [0]')
parser.add_argument('--optim', default='RAdam', type=str, help='Choice of optimizer [RAdam]')
parser.add_argument('--seed', default='0', type=int, help='random seed')
parser.add_argument('--save_dir', default='transmil_imagenetresnet_c16', type=str, help='the directory used to save all the output')
parser.add_argument('--fold', default='0', type=str, help='fold')
args = parser.parse_args()
gpu_ids = tuple(args.gpu_index)
os.environ['CUDA_VISIBLE_DEVICES']=','.join(str(x) for x in gpu_ids)
maybe_mkdir_p(join(args.save_dir, "transmil_naive"))
args.save_dir = make_dirs(join(args.save_dir, "transmil_naive"))
maybe_mkdir_p(args.save_dir)
# <------------- set up sparse coding ------------->
# args.L = 256
args.L = 512
# <------------- set up logging ------------->
logging_path = os.path.join(args.save_dir, 'Train_log.log')
logger = get_logger(logging_path)
# <------------- save hyperparams ------------->
option = vars(args)
file_name = os.path.join(args.save_dir, 'option.txt')
with open(file_name, 'wt') as opt_file:
opt_file.write('------------ Options -------------\n')
for k, v in sorted(option.items()):
opt_file.write('%s: %s\n' % (str(k), str(v)))
opt_file.write('-------------- End ----------------\n')
criterion = nn.BCEWithLogitsLoss()
# <------------- define MIL network ------------->
milnet = TransMIL(args.feats_size, args.num_classes, mDim=args.L).cuda()
if args.optim == 'RAdam':
base_optimizer = RAdam(milnet.parameters(), lr=args.lr, weight_decay=args.weight_decay)
optimizer = Lookahead(base_optimizer)
# scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.num_epochs, 0.000005)
elif args.optim == 'Adam':
optimizer = torch.optim.Adam(milnet.parameters(), lr=args.lr, betas=(0.5, 0.9), weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.num_epochs, 0.000005)
elif args.optim == 'AdamW':
base_optimizer = torch.optim.AdamW(milnet.parameters(), lr=args.lr, betas=(0.5, 0.9), weight_decay=args.weight_decay)
optimizer = Lookahead(base_optimizer)
trainset = C16DatasetV3(args, 'train')
testset = C16DatasetV3(args, 'test')
#trainset = C16DatasetV3_tcga(args, 'train')
#testset = C16DatasetV3_tcga(args, 'test')
#trainset = C16DatasetV4(args, 'train')
#testset = C16DatasetV4(args, 'test')
trainloader = DataLoader(trainset, 1, shuffle=True, num_workers=args.num_workers, drop_last=False, pin_memory=True)
testloader = DataLoader(testset, 1, shuffle=False, num_workers=args.num_workers, drop_last=False, pin_memory=True)
best_score = 0
save_path = join(args.save_dir, 'weights')
os.makedirs(save_path, exist_ok=True)
for epoch in tqdm(range(1, args.num_epochs + 1)):
train_loss_bag = train(trainloader, milnet, criterion, optimizer, args) # iterate all bags
test_loss_bag, avg_score, aucs, thresholds_optimal,f1 = test(testloader, milnet, criterion, args)
logger.info('\r Epoch [%d/%d] train loss: %.4f test loss: %.4f, average score: %.4f, f1 score: %.4f, AUC: ' %
(epoch, args.num_epochs, train_loss_bag, test_loss_bag, avg_score,f1) + '|'.join('class-{}>>{}'.format(*k) for k in enumerate(aucs)))
if args.optim == 'Adam':
scheduler.step()
current_score = (sum(aucs) + avg_score)/2
if current_score >= best_score:
best_score = current_score
save_name = os.path.join(save_path, 'best_model.pth')
torch.save(milnet.state_dict(), save_name)
logger.info('Best model saved at: ' + save_name)
logger.info('Best thresholds ===>>> '+ '|'.join('class-{}>>{}'.format(*k) for k in enumerate(thresholds_optimal)))
if __name__ == '__main__':
main()