Skip to content

Latest commit

 

History

History
80 lines (50 loc) · 2.72 KB

get_started.md

File metadata and controls

80 lines (50 loc) · 2.72 KB

Getting Started

This page provides basic usage based on MMdetection (V2.25.0). For installation instructions, please see install.md.

Train a model

MMDetection implements distributed training and non-distributed training, which uses MMDistributedDataParallel and MMDataParallel respectively.

All outputs (log files and checkpoints) will be saved to the working directory, which is specified by work_dir in the config file.

  1. Train with a single GPU
CUDA_VISIBLE_DEVICES=0 python tools/train.py ${CONFIG_FILE}  #

Example:
CUDA_VISIBLE_DEVICES=0 python tools/train.py configs/apro_boxsolov2/box_solov2_voc_r50_fpn_3x.py 
  1. Train with multiple GPUs
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

Example:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ./tools/dist_train.sh configs/apro_boxsolov2/box_solov2_coco_r50_fpn_3x.py 8

Inference with pretrained models

We provide the testing scripts to evaluate the trained models.

Examples for apro_boxsolov2: Assume that you have already downloaded the checkpoints to work_dirs/apro_boxsolov2_r50_3x_coco/.

  1. Test with single GPU and get mask AP values.
CUDA_VISIBLE_DEVICES=0 python tools/test.py configs/apro_boxsolov2/box_solov2_coco_r50_fpn_3x.py \
    work_dirs/apro_boxsolov2_r50_3x_coco/xxx.pth  --eval segm
  1. Test with 8 GPUs and get mask AP values on val dataset.
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ./tools/dist_test.sh configs/apro_boxsolov2/box_solov2_coco_r50_fpn_3x.py \
    work_dirs/apro_boxsolov2_r50_3x_coco/xxx.pth 8 --eval segm 
  1. Test with 8 GPUs and get mask AP values on test-dev dataset.
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 ./tools/dist_test.sh configs/apro_boxsolov2/box_solov2_coco_r50_fpn_3x.py \
    work_dirs/apro_boxsolov2_r50_3x_coco/xxx.pth 8 --format-only --eval-options "jsonfile_prefix=work_dirs/r50_coco_dev" 

Generate the json results, and submit to the COCO challenge server for test-dev performance evaluation.

Inference for visual results

  1. Test for COCO

     CUDA_VISIBLE_DEVICES=0 python tools/test.py configs/apro_boxsolov2/box_solov2_coco_r50_fpn_3x.py \
     work_dirs/apro_boxsolov2_r50_3x_coco/xxx.pth  --show-dir work_dirs/apro_vis_coco_r50/

Note: The visual results is in show-dir.

Data preparation

  1. Pascal VOC(Augmented) is the extension of the training set of VOC 2012 with SBD follwing BoxInstSeg The link of whole dataset with coco json format is here(GoogleDrive)

More dataset will be updated.