-
Notifications
You must be signed in to change notification settings - Fork 4
/
ReferenceState.pyx
288 lines (229 loc) · 13.4 KB
/
ReferenceState.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!python
# cython: boundscheck=False
# cython: wraparound=True
# cython: initializedcheck=False
# cython: cdivision=True
cimport Grid
cimport Restart
cimport numpy as np
import numpy as np
from NetCDFIO cimport NetCDFIO_Stats
cimport ParallelMPI
from scipy.integrate import odeint
include 'parameters.pxi'
cdef extern from "thermodynamic_functions.h":
inline double qt_from_pv(double p0, double pv)
inline double thetali_c(double p0, double T, double qt, double ql, double qi, double L)
cdef class ReferenceState:
def __init__(self, Grid.Grid Gr ):
self.p0 = np.zeros(Gr.dims.nlg[2], dtype=np.double, order='c')
self.p0_half = np.zeros(Gr.dims.nlg[2], dtype=np.double, order='c')
self.alpha0 = np.zeros(Gr.dims.nlg[2], dtype=np.double, order='c')
self.alpha0_half = np.zeros(Gr.dims.nlg[2], dtype=np.double, order='c')
self.rho0 = np.zeros(Gr.dims.nlg[2], dtype=np.double, order='c')
self.rho0_half = np.zeros(Gr.dims.nlg[2], dtype=np.double, order='c')
self.thetali0 = np.zeros(Gr.dims.nlg[2], dtype=np.double, order='c')
self.thetali0_half = np.zeros(Gr.dims.nlg[2], dtype=np.double, order='c')
self.p0_global = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
self.p0_half_global = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
self.alpha0_global = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
self.alpha0_half_global = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
self.rho0_global = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
self.rho0_half_global = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
self.thetali0_global = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
self.thetali0_half_global = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
return
def initialize(self, Grid.Grid Gr, Thermodynamics, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
'''
Initilize the reference profiles. The function is typically called from the case specific initialization
fucntion defined in Initialization.pyx
:param Gr: Grid class
:param Thermodynamics: Thermodynamics class
:param NS: StatsIO class
:param Pa: ParallelMPI class
:return:
'''
self.sg = Thermodynamics.entropy(self.Pg, self.Tg, self.qtg, 0.0, 0.0)
# Form a right hand side for integrating the hydrostatic equation to
# determine the reference pressure
def rhs(p, z):
T, ql, qi = Thermodynamics.eos(np.exp(p), self.sg, self.qtg)
return -g / (Rd * T * (1.0 - self.qtg + eps_vi * (self.qtg - ql - qi)))
# Construct arrays for integration points
z = np.array(Gr.zp[Gr.dims.gw - 1:-Gr.dims.gw + 1])
z_half = np.append([0.0], np.array(Gr.zp_half[Gr.dims.gw:-Gr.dims.gw]))
# We are integrating the log pressure so need to take the log of the
# surface pressure
p0 = np.log(self.Pg)
p = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
p_half = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
# Perform the integration
p[Gr.dims.gw - 1:-Gr.dims.gw +1] = odeint(rhs, p0, z, hmax=1.0)[:, 0]
p_half[Gr.dims.gw:-Gr.dims.gw] = odeint(rhs, p0, z_half, hmax=1.0)[1:, 0]
# Set boundary conditions
p[:Gr.dims.gw - 1] = p[2 * Gr.dims.gw - 2:Gr.dims.gw - 1:-1]
p[-Gr.dims.gw + 1:] = p[-Gr.dims.gw - 1:-2 * Gr.dims.gw:-1]
p_half[:Gr.dims.gw] = p_half[2 * Gr.dims.gw - 1:Gr.dims.gw - 1:-1]
p_half[-Gr.dims.gw:] = p_half[-Gr.dims.gw - 1:-2 * Gr.dims.gw - 1:-1]
p = np.exp(p)
p_half = np.exp(p_half)
self.p0_global = p
self.p0_half_global = p_half
cdef double[:] p_ = p
cdef double[:] p_half_ = p_half
cdef double[:] temperature = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
cdef double[:] temperature_half = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
cdef double[:] alpha = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
cdef double[:] alpha_half = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
cdef double [:] thetali = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
cdef double [:] thetali_half = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
cdef double[:] ql = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
cdef double[:] qi = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
cdef double[:] qv = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
cdef double[:] ql_half = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
cdef double[:] qi_half = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
cdef double[:] qv_half = np.zeros(Gr.dims.ng[2], dtype=np.double, order='c')
# Compute reference state thermodynamic profiles
for k in xrange(Gr.dims.ng[2]):
temperature[k], ql[k], qi[k] = Thermodynamics.eos(p_[k], self.sg, self.qtg)
qv[k] = self.qtg - (ql[k] + qi[k])
alpha[k] = Thermodynamics.alpha(p_[k], temperature[k], self.qtg, qv[k])
thetali[k] = thetali_c(p_[k], temperature[k], self.qtg, ql[k], qi[k], Thermodynamics.get_lh(temperature[k]))
temperature_half[k], ql_half[k], qi_half[k] = Thermodynamics.eos(p_half_[k], self.sg, self.qtg)
qv_half[k] = self.qtg - (ql_half[k] + qi_half[k])
alpha_half[k] = Thermodynamics.alpha(p_half_[k], temperature_half[k], self.qtg, qv_half[k])
thetali_half[k] = thetali_c(p_half_[k], temperature_half[k], self.qtg, ql_half[k], qi_half[k], Thermodynamics.get_lh(temperature_half[k]))
# Now do a sanity check to make sure that the Reference State entropy profile is uniform following
# saturation adjustment
cdef double s
for k in xrange(Gr.dims.ng[2]):
s = Thermodynamics.entropy(p_half[k],temperature_half[k],self.qtg,ql_half[k],qi_half[k])
if np.abs(s - self.sg)/self.sg > 0.01:
Pa.root_print('Error in reference profiles entropy not constant !')
Pa.root_print('Likely error in saturation adjustment')
Pa.root_print('Kill Simulation Now!')
Pa.kill()
self.alpha0_global = alpha
self.alpha0_half_global = alpha_half
self.rho0_global = 1.0/np.array(self.alpha0_global)
self.rho0_half_global = 1.0/np.array(self.alpha0_half_global)
self.thetali0_global = thetali
self.thetali0_half_global = thetali_half
# print(np.array(Gr.extract_local_ghosted(alpha_half,2)))
self.alpha0_half = Gr.extract_local_ghosted(alpha_half, 2)
self.alpha0 = Gr.extract_local_ghosted(alpha, 2)
self.p0 = Gr.extract_local_ghosted(p_, 2)
self.p0_half = Gr.extract_local_ghosted(p_half, 2)
self.rho0 = 1.0 / np.array(self.alpha0)
self.rho0_half = 1.0 / np.array(self.alpha0_half)
self.thetali0 = Gr.extract_local_ghosted(thetali, 2)
self.thetali0_half = Gr.extract_local_ghosted(thetali_half,2)
# Write reference profiles to StatsIO
# Output specific volume
units = r'm^{3}kg^{-1}'
nice_name = r'\alpha_{0}^{half}'
desc = r'reference state specific volume at half level'
NS.add_reference_profile('alpha0_half', Gr, Pa, units=units, nice_name = nice_name, desc=desc)
NS.write_reference_profile('alpha0_half', alpha_half[Gr.dims.gw:-Gr.dims.gw], Pa)
nice_name = r'\alpha_{0}'
desc = r'reference state specific volume'
NS.add_reference_profile('alpha0', Gr, Pa, units='m^{3}kg^{-1}', nice_name=nice_name, desc=desc)
NS.write_reference_profile('alpha0', alpha[Gr.dims.gw:-Gr.dims.gw], Pa)
# Output pressure
units = r'Pa'
nice_name = r'p^{half}_{0}'
desc = r'reference state pressure at half level'
NS.add_reference_profile('p0_half', Gr, Pa, units=units, nice_name = nice_name, desc=desc)
NS.write_reference_profile('p0_half', p_half[Gr.dims.gw:-Gr.dims.gw], Pa)
nice_name = r'p_{0}'
desc = r'reference state pressure'
NS.add_reference_profile('p0', Gr, Pa, units=units, nice_name = nice_name, desc=desc)
NS.write_reference_profile('p0', p[Gr.dims.gw:-Gr.dims.gw], Pa)
# Output densities
units = r'kgm^{-3}'
nice_name = r'\rho_{0}^{half}'
desc = r'reference state density at half level'
NS.add_reference_profile('rho0_half', Gr, Pa, units=units, nice_name = nice_name, desc=desc)
NS.write_reference_profile('rho0_half', 1.0 / np.array(alpha_half[Gr.dims.gw:-Gr.dims.gw]), Pa)
nice_name = r'\rho_0'
desc = r'reference state density'
NS.add_reference_profile('rho0', Gr, Pa, units=units, nice_name = nice_name, desc=desc)
NS.write_reference_profile('rho0', 1.0 / np.array(alpha[Gr.dims.gw:-Gr.dims.gw]), Pa)
units = r'K'
nice_name = r'T_0'
desc = r'reference state temperature at half level'
# Output temperature
NS.add_reference_profile('temperature0', Gr, Pa, units=units, nice_name = nice_name, desc=desc)
NS.write_reference_profile('temperature0', temperature_half[Gr.dims.gw:-Gr.dims.gw], Pa)
# Output water variable specific humidities
units=r'kg/kg'
nice_name = r'ql_0'
desc = r'reference state liquid water specific humidity'
NS.add_reference_profile('ql0', Gr, Pa, units=units, nice_name = nice_name, desc=desc)
NS.write_reference_profile('ql0', ql_half[Gr.dims.gw:-Gr.dims.gw], Pa)
nice_name = r'qv_0'
desc = r'reference state water vapor specific humidity'
NS.add_reference_profile('qv0', Gr, Pa, units=units, nice_name = nice_name, desc=desc)
NS.write_reference_profile('qv0', qv_half[Gr.dims.gw:-Gr.dims.gw], Pa)
nice_name = r'qi_0'
desc = r'reference state ice water specific humidity'
NS.add_reference_profile('qi0', Gr, Pa, units=units, nice_name = nice_name, desc=desc)
NS.write_reference_profile('qi0', qi_half[Gr.dims.gw:-Gr.dims.gw], Pa)
return
cpdef restart(self, Grid.Grid Gr, Restart.Restart Re):
Re.restart_data['Ref'] = {}
Re.restart_data['Ref']['p0'] = np.array(self.p0)
Re.restart_data['Ref']['p0_half'] = np.array(self.p0_half)
Re.restart_data['Ref']['alpha0'] = np.array(self.alpha0)
Re.restart_data['Ref']['alpha0_half'] = np.array(self.alpha0_half)
Re.restart_data['Ref']['p0_global'] = np.array(self.p0_global)
Re.restart_data['Ref']['p0_half_global'] = np.array(self.p0_half_global)
Re.restart_data['Ref']['alpha0_global'] = np.array(self.alpha0_global)
Re.restart_data['Ref']['alpha0_half_global'] = np.array(self.alpha0_half_global)
Re.restart_data['Ref']['Tg'] = self.Tg
Re.restart_data['Ref']['Pg'] = self.Pg
Re.restart_data['Ref']['sg'] = self.sg
Re.restart_data['Ref']['qtg'] = self.qtg
Re.restart_data['Ref']['u0'] = self.u0
Re.restart_data['Ref']['v0'] = self.v0
return
cpdef init_from_restart(self, Grid.Grid Gr, Restart.Restart Re, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
self.Tg = Re.restart_data['Ref']['Tg']
self.Pg = Re.restart_data['Ref']['Pg']
self.sg = Re.restart_data['Ref']['sg']
self.qtg = Re.restart_data['Ref']['qtg']
self.u0 = Re.restart_data['Ref']['u0']
self.v0 = Re.restart_data['Ref']['v0']
self.p0 = Re.restart_data['Ref']['p0']
self.p0_half = Re.restart_data['Ref']['p0_half']
self.alpha0 = Re.restart_data['Ref']['alpha0']
self.alpha0_half = Re.restart_data['Ref']['alpha0_half']
self.rho0 = 1.0 / Re.restart_data['Ref']['alpha0']
self.rho0_half = 1.0 / Re.restart_data['Ref']['alpha0_half']
self.p0_global = Re.restart_data['Ref']['p0_global']
self.p0_half_global = Re.restart_data['Ref']['p0_half_global']
self.alpha0_global = Re.restart_data['Ref']['alpha0_global']
self.alpha0_half_global = Re.restart_data['Ref']['alpha0_half_global']
self.rho0_global = 1.0 / Re.restart_data['Ref']['alpha0_global']
self.rho0_half_global = 1.0 / Re.restart_data['Ref']['alpha0_half_global']
# Output pressure
units = r'Pa'
nice_name = r'p_{0}'
desc = r'reference state pressure at half level'
NS.add_reference_profile('p0', Gr, Pa, units=units, nice_name = nice_name, desc=desc)
NS.write_reference_profile('p0', self.p0_half[Gr.dims.gw:-Gr.dims.gw], Pa)
nice_name = r'p_{0}^{full}'
desc = r'reference state pressure at full level'
NS.add_reference_profile('p0_full', Gr, Pa, units=units, nice_name = nice_name, desc=desc)
NS.write_reference_profile('p0_full', self.p0[Gr.dims.gw:-Gr.dims.gw], Pa)
# Output densities
units = r'kgm^{-3}'
nice_name = r'\rho_{0}'
desc = r'reference state density at half level'
NS.add_reference_profile('rho0', Gr, Pa, units=units, nice_name = nice_name, desc=desc)
NS.write_reference_profile('rho0', 1.0 / np.array(self.alpha0_half[Gr.dims.gw:-Gr.dims.gw]), Pa)
nice_name = r'\rho_0^{full}'
desc = r'reference state density at full level'
NS.add_reference_profile('rho0_full', Gr, Pa, units=units, nice_name = nice_name, desc=desc)
NS.write_reference_profile('rho0_full', 1.0 / np.array(self.alpha0[Gr.dims.gw:-Gr.dims.gw]), Pa)
return