-
Notifications
You must be signed in to change notification settings - Fork 4
/
SGS.pyx
369 lines (281 loc) · 14.8 KB
/
SGS.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#!python
#cython: boundscheck=False
#cython: wraparound=False
#cython: initializedcheck=False
#cython: cdivision=True
cimport Grid
cimport PrognosticVariables
cimport DiagnosticVariables
cimport Kinematics
cimport ParallelMPI
cimport Surface
from NetCDFIO cimport NetCDFIO_Stats
from libc.math cimport exp, sqrt
cimport numpy as np
import numpy as np
import cython
cdef extern from "sgs.h":
void smagorinsky_update(Grid.DimStruct* dims, double* visc, double* diff, double* buoy_freq,
double* strain_rate_mag, double cs, double prt)
void tke_viscosity_diffusivity(Grid.DimStruct *dims, double* e, double* buoy_freq,double* visc, double* diff,
double cn, double ck)
void tke_dissipation(Grid.DimStruct* dims, double* e, double* e_tendency, double* buoy_freq, double cn, double ck)
void tke_shear_production(Grid.DimStruct *dims, double* e_tendency, double* visc, double* strain_rate_mag)
void tke_buoyant_production(Grid.DimStruct *dims, double* e_tendency, double* diff, double* buoy_freq)
void tke_surface(Grid.DimStruct *dims, double* e, double* lmo, double* ustar, double h_bl, double zb) nogil
double tke_ell(double cn, double e, double buoy_freq, double delta) nogil
void smagorinsky_update_wall(Grid.DimStruct* dims, double* zl_half, double* visc, double* diff, double* buoy_freq,
double* strain_rate_mag, double cs, double prt)
void smagorinsky_update_iles(Grid.DimStruct* dims, double* zl_half, double* visc, double* diff, double* buoy_freq,
double* strain_rate_mag, double cs, double prt)
cdef class SGS:
def __init__(self,namelist):
if(namelist['sgs']['scheme'] == 'UniformViscosity'):
self.scheme = UniformViscosity(namelist)
elif(namelist['sgs']['scheme'] == 'LinearViscosity'):
self.scheme = LinearViscosity(namelist)
elif(namelist['sgs']['scheme'] == 'Smagorinsky'):
self.scheme = Smagorinsky(namelist)
elif(namelist['sgs']['scheme'] == 'TKE'):
self.scheme = TKE(namelist)
return
cpdef initialize(self, Grid.Grid Gr, PrognosticVariables.PrognosticVariables PV, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
self.scheme.initialize(Gr,PV,NS,Pa)
return
cpdef update(self, Grid.Grid Gr, DiagnosticVariables.DiagnosticVariables DV,
PrognosticVariables.PrognosticVariables PV,Kinematics.Kinematics Ke,Surface.SurfaceBase Sur, ParallelMPI.ParallelMPI Pa):
self.scheme.update(Gr,DV,PV,Ke,Sur,Pa)
return
cpdef stats_io(self, Grid.Grid Gr, DiagnosticVariables.DiagnosticVariables DV,
PrognosticVariables.PrognosticVariables PV, Kinematics.Kinematics Ke, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
self.scheme.stats_io(Gr,DV,PV,Ke,NS,Pa)
return
cdef class UniformViscosity:
def __init__(self,namelist):
try:
self.const_diffusivity = namelist['sgs']['UniformViscosity']['diffusivity']
except:
self.const_diffusivity = 0.0
try:
self.const_viscosity = namelist['sgs']['UniformViscosity']['viscosity']
except:
self.const_viscosity = 0.0
self.is_init = False
return
cpdef initialize(self, Grid.Grid Gr, PrognosticVariables.PrognosticVariables PV, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
return
cpdef update(self, Grid.Grid Gr, DiagnosticVariables.DiagnosticVariables DV,
PrognosticVariables.PrognosticVariables PV, Kinematics.Kinematics Ke,Surface.SurfaceBase Sur, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t diff_shift = DV.get_varshift(Gr,'diffusivity')
Py_ssize_t visc_shift = DV.get_varshift(Gr,'viscosity')
Py_ssize_t i
with nogil:
if not self.is_init:
for i in xrange(Gr.dims.npg):
DV.values[diff_shift + i] = self.const_diffusivity
DV.values[visc_shift + i] = self.const_viscosity
self.is_init = True
return
cpdef stats_io(self, Grid.Grid Gr, DiagnosticVariables.DiagnosticVariables DV,
PrognosticVariables.PrognosticVariables PV, Kinematics.Kinematics Ke, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
return
cdef class LinearViscosity:
def __init__(self,namelist):
try:
self.diffusivity_max = namelist['sgs']['LinearViscosity']['diffusivity_max']
except:
self.diffusivity_max = 0.0
try:
self.viscosity_max = namelist['sgs']['LinearViscosity']['viscosity_max']
except:
self.viscosity_max = 0.0
try:
self.z_peak1 = namelist['sgs']['LinearViscosity']['z_peak1']
except:
self.z_peak1 = 0.0
try:
self.z_peak2 = namelist['sgs']['LinearViscosity']['z_peak2']
except:
self.z_peak2 = self.z_peak1
try:
self.z_top = namelist['sgs']['LinearViscosity']['z_top']
except:
self.z_top = 0.0
self.is_init = False
return
cpdef initialize(self, Grid.Grid Gr, PrognosticVariables.PrognosticVariables PV, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
return
cpdef update(self, Grid.Grid Gr, DiagnosticVariables.DiagnosticVariables DV,
PrognosticVariables.PrognosticVariables PV, Kinematics.Kinematics Ke,Surface.SurfaceBase Sur, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t diff_shift = DV.get_varshift(Gr,'diffusivity')
Py_ssize_t visc_shift = DV.get_varshift(Gr,'viscosity')
Py_ssize_t gw = Gr.dims.gw
Py_ssize_t imax = Gr.dims.nlg[0] - gw
Py_ssize_t jmax = Gr.dims.nlg[1] - gw
Py_ssize_t kmax = Gr.dims.nlg[2] - gw
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t i,j,k,ishift,jshift,ijk
cdef double [:] xi = np.zeros(Gr.dims.nlg[2],dtype=np.double,order='c')
with nogil:
for k in xrange(Gr.dims.nlg[2]):
if Gr.zpl_half[k] >= self.z_top:
xi[k] = 0.0
elif Gr.zpl_half[k] >= self.z_peak2:
xi[k] = (self.z_top-Gr.zpl_half[k]) / (self.z_top-self.z_peak2)
elif Gr.zpl_half[k] >= self.z_peak1:
xi[k] = 1.0
else:
xi[k] = Gr.zpl_half[k] / self.z_peak1
with nogil:
if not self.is_init:
for i in xrange(gw,imax):
ishift = i * istride
for j in xrange(gw,jmax):
jshift = j * jstride
for k in xrange(gw,kmax):
ijk = ishift + jshift + k
DV.values[diff_shift + ijk] = self.diffusivity_max * xi[k]
DV.values[visc_shift + ijk] = self.viscosity_max * xi[k]
self.is_init = True
return
cpdef stats_io(self, Grid.Grid Gr, DiagnosticVariables.DiagnosticVariables DV,
PrognosticVariables.PrognosticVariables PV, Kinematics.Kinematics Ke, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
return
cdef class Smagorinsky:
def __init__(self,namelist):
try:
self.cs = namelist['sgs']['Smagorinsky']['cs']
except:
self.cs = 0.17
try:
self.prt = namelist['sgs']['Smagorinsky']['prt']
except:
self.prt = 1.0/3.0
try:
self.adjust_wall = namelist['sgs']['Smagorinsky']['wall']
if self.adjust_wall:
self.iles = False
except:
self.adjust_wall = False
try:
self.iles = namelist['sgs']['Smagorinsky']['iles']
if self.iles:
self.adjust_wall = False
except:
self.iles = False
return
cpdef initialize(self, Grid.Grid Gr, PrognosticVariables.PrognosticVariables PV, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
return
cpdef update(self, Grid.Grid Gr, DiagnosticVariables.DiagnosticVariables DV,
PrognosticVariables.PrognosticVariables PV, Kinematics.Kinematics Ke, Surface.SurfaceBase Sur, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t diff_shift = DV.get_varshift(Gr,'diffusivity')
Py_ssize_t visc_shift = DV.get_varshift(Gr,'viscosity')
Py_ssize_t bf_shift =DV.get_varshift(Gr, 'buoyancy_frequency')
if self.adjust_wall:
smagorinsky_update_wall(&Gr.dims, &Gr.zpl_half[0], &DV.values[visc_shift],&DV.values[diff_shift],&DV.values[bf_shift],
&Ke.strain_rate_mag[0],self.cs,self.prt)
elif self.iles:
smagorinsky_update_iles(&Gr.dims, &Gr.zpl_half[0], &DV.values[visc_shift],&DV.values[diff_shift],&DV.values[bf_shift],
&Ke.strain_rate_mag[0],self.cs,self.prt)
else:
smagorinsky_update(&Gr.dims,&DV.values[visc_shift],&DV.values[diff_shift],&DV.values[bf_shift],
&Ke.strain_rate_mag[0],self.cs,self.prt)
return
cpdef stats_io(self, Grid.Grid Gr, DiagnosticVariables.DiagnosticVariables DV,
PrognosticVariables.PrognosticVariables PV, Kinematics.Kinematics Ke, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
return
cdef class TKE:
def __init__(self,namelist):
try:
self.ck = namelist['sgs']['TKE']['ck']
except:
self.ck = 0.1
try:
self.cn = namelist['sgs']['TKE']['cn']
except:
self.cn = 0.76
return
cpdef initialize(self, Grid.Grid Gr, PrognosticVariables.PrognosticVariables PV, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
PV.add_variable('e', 'm^2/s^2', 'e', 'turbulence kinetic energy', 'sym','scalar',Pa)
self.Z_Pencil = ParallelMPI.Pencil()
self.Z_Pencil.initialize(Gr,Pa,dim=2)
NS.add_profile('tke_dissipation_tendency', Gr, Pa)
NS.add_profile('tke_shear_tendency', Gr, Pa)
NS.add_profile('tke_buoyancy_tendency', Gr, Pa)
NS.add_profile('tke_prandtl_number', Gr, Pa)
NS.add_profile('tke_mixing_length', Gr, Pa)
return
cpdef update(self, Grid.Grid Gr, DiagnosticVariables.DiagnosticVariables DV, PrognosticVariables.PrognosticVariables PV,
Kinematics.Kinematics Ke, Surface.SurfaceBase Sur, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t diff_shift = DV.get_varshift(Gr,'diffusivity')
Py_ssize_t visc_shift = DV.get_varshift(Gr,'viscosity')
Py_ssize_t bf_shift = DV.get_varshift(Gr,'buoyancy_frequency')
Py_ssize_t e_shift = PV.get_varshift(Gr,'e')
Py_ssize_t th_shift
Py_ssize_t i,k
double [:,:] theta_pencil
double h_local = 0.0
double h_global = 0.0
double n_xy_i = 1.0/(Gr.dims.nlg[0]*Gr.dims.nlg[1])
if 'theta_rho' in DV.name_index:
th_shift = DV.get_varshift(Gr,'theta_rho')
else:
th_shift = DV.get_varshift(Gr,'theta')
theta_pencil = self.Z_Pencil.forward_double(&Gr.dims, Pa, &DV.values[th_shift])
for i in xrange(self.Z_Pencil.n_local_pencils):
k=Gr.dims.gw
while theta_pencil[i,k] <= theta_pencil[i,Gr.dims.gw]:
k = k + 1
h_local = h_local + Gr.z_half[k]
h_global = Pa.domain_scalar_sum(h_local)/(Gr.dims.n[0]*Gr.dims.n[1])
tke_viscosity_diffusivity(&Gr.dims, &PV.values[e_shift], &DV.values[bf_shift], &DV.values[visc_shift],
&DV.values[diff_shift], self.cn, self.ck)
tke_dissipation(&Gr.dims, &PV.values[e_shift], &PV.tendencies[e_shift], &DV.values[bf_shift], self.cn, self.ck)
tke_shear_production(&Gr.dims, &PV.tendencies[e_shift], &DV.values[visc_shift], &Ke.strain_rate_mag[0])
tke_buoyant_production(&Gr.dims, &PV.tendencies[e_shift], &DV.values[diff_shift], &DV.values[bf_shift])
if Pa.sub_z_rank == 0:
tke_surface(&Gr.dims, &PV.values[e_shift], &Sur.obukhov_length[0], &Sur.friction_velocity[0] , h_global, Gr.zl_half[Gr.dims.gw])
return
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
cpdef stats_io(self, Grid.Grid Gr, DiagnosticVariables.DiagnosticVariables DV,
PrognosticVariables.PrognosticVariables PV, Kinematics.Kinematics Ke, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t diff_shift = DV.get_varshift(Gr,'diffusivity')
Py_ssize_t visc_shift = DV.get_varshift(Gr,'viscosity')
Py_ssize_t bf_shift = DV.get_varshift(Gr,'buoyancy_frequency')
Py_ssize_t e_shift = PV.get_varshift(Gr,'e')
double [:] mean_tendency = np.empty((Gr.dims.nlg[2],),dtype=np.double,order='c')
double [:] mean = np.empty((Gr.dims.nlg[2],),dtype=np.double,order='c')
cdef double [:] tmp_tendency1 = np.zeros((Gr.dims.npg),dtype=np.double,order='c')
tke_dissipation(&Gr.dims, &PV.values[e_shift], &tmp_tendency1[0], &DV.values[bf_shift], self.cn, self.ck)
mean_tendency = Pa.HorizontalMean(Gr,&tmp_tendency1[0])
NS.write_profile('tke_dissipation_tendency',mean_tendency[Gr.dims.gw:-Gr.dims.gw],Pa)
cdef double [:] tmp_tendency2 = np.zeros((Gr.dims.npg),dtype=np.double,order='c')
tke_shear_production(&Gr.dims, &tmp_tendency2[0], &DV.values[visc_shift], &Ke.strain_rate_mag[0])
mean_tendency = Pa.HorizontalMean(Gr,&tmp_tendency2[0])
NS.write_profile('tke_shear_tendency',mean_tendency[Gr.dims.gw:-Gr.dims.gw],Pa)
cdef double [:] tmp_tendency3 = np.zeros((Gr.dims.npg),dtype=np.double,order='c')
tke_buoyant_production(&Gr.dims, &tmp_tendency3[0], &DV.values[diff_shift], &DV.values[bf_shift])
mean_tendency = Pa.HorizontalMean(Gr,&tmp_tendency3[0])
NS.write_profile('tke_buoyancy_tendency',mean_tendency[Gr.dims.gw:-Gr.dims.gw],Pa)
cdef:
Py_ssize_t i
double delta = (Gr.dims.dx[0] * Gr.dims.dx[1] * Gr.dims.dx[2])**(1.0/3.0)
double [:] prt = np.zeros((Gr.dims.npg),dtype=np.double,order='c')
double [:] mixing_length = np.zeros((Gr.dims.npg),dtype=np.double,order='c')
with nogil:
for i in xrange(Gr.dims.npg):
mixing_length[i] = tke_ell(self.cn, PV.values[e_shift+i], DV.values[bf_shift+i], delta)
prt[i] = delta/(delta + 2.0*mixing_length[i])
mean = Pa.HorizontalMean(Gr,&prt[0])
NS.write_profile('tke_prandtl_number',mean[Gr.dims.gw:-Gr.dims.gw],Pa)
mean = Pa.HorizontalMean(Gr,&mixing_length[0])
NS.write_profile('tke_mixing_length',mean[Gr.dims.gw:-Gr.dims.gw],Pa)
return