-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfloat.go
278 lines (250 loc) · 7.32 KB
/
float.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// MIT License
//
// Copyright (c) 2017 José Santos <henrique_1609@me.com>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
package fastprinter
import (
"io"
"math"
)
type floatInfo struct {
mantbits uint
expbits uint
bias int
}
var (
float64info = floatInfo{52, 11, -1023}
floatNaN = []byte("Nan")
floatNinf = []byte("-Inf")
floatPinf = []byte("+Inf")
pool_floatBuffer = newByteSliceBufferPool(800)
)
func PrintFloat(w io.Writer, f float64) (int, error) {
return PrintFloatPrecision(w, f, -1)
}
func PrintFloatPrecision(dst io.Writer, val float64, prec int) (int, error) {
var bits uint64
var flt *floatInfo
bits = math.Float64bits(val)
flt = &float64info
neg := bits>>(flt.expbits+flt.mantbits) != 0
exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
mant := bits & (uint64(1)<<flt.mantbits - 1)
switch exp {
case 1<<flt.expbits - 1:
switch {
case mant != 0:
return dst.Write(floatNaN)
case neg:
return dst.Write(floatNinf)
default:
return dst.Write(floatPinf)
}
case 0:
// denormalized
exp++
default:
// add implicit top bit
mant |= uint64(1) << flt.mantbits
}
exp += flt.bias
var digs decimalSlice
ok := false
// Negative precision means "only as much as needed to be exact."
shortest := prec < 0
if shortest {
// Try Grisu3 algorithm.
f := new(extFloat)
lower, upper := f.AssignComputeBounds(mant, exp, neg, flt)
var buf [32]byte
digs.d = buf[:]
ok = f.ShortestDecimal(&digs, &lower, &upper)
if !ok {
return bigFtoa(dst, prec, neg, mant, exp, flt)
}
// Precision for shortest representation mode.
prec = max(digs.nd-digs.dp, 0)
}
if !ok {
return bigFtoa(dst, prec, neg, mant, exp, flt)
}
return fmtF(dst, neg, digs, prec)
}
// bigFtoa uses multiprecision computations to format a float.
func bigFtoa(dst io.Writer, prec int, neg bool, mant uint64, exp int, flt *floatInfo) (int, error) {
d := new(decimal)
d.Assign(mant)
d.Shift(exp - int(flt.mantbits))
var digs decimalSlice
shortest := prec < 0
if shortest {
roundShortest(d, mant, exp, flt)
digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
prec = max(digs.nd-digs.dp, 0)
} else {
d.Round(d.dp + prec)
digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
}
return fmtF(dst, neg, digs, prec)
}
// roundShortest rounds d (= mant * 2^exp) to the shortest number of digits
// that will let the original floating point value be precisely reconstructed.
func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) {
// If mantissa is zero, the number is zero; stop now.
if mant == 0 {
d.nd = 0
return
}
// Compute upper and lower such that any decimal number
// between upper and lower (possibly inclusive)
// will round to the original floating point number.
// We may see at once that the number is already shortest.
//
// Suppose d is not denormal, so that 2^exp <= d < 10^dp.
// The closest shorter number is at least 10^(dp-nd) away.
// The lower/upper bounds computed below are at distance
// at most 2^(exp-mantbits).
//
// So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits),
// or equivalently log2(10)*(dp-nd) > exp-mantbits.
// It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32).
minexp := flt.bias + 1 // minimum possible exponent
if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) {
// The number is already shortest.
return
}
// d = mant << (exp - mantbits)
// Next highest floating point number is mant+1 << exp-mantbits.
// Our upper bound is halfway between, mant*2+1 << exp-mantbits-1.
upper := new(decimal)
upper.Assign(mant*2 + 1)
upper.Shift(exp - int(flt.mantbits) - 1)
// d = mant << (exp - mantbits)
// Next lowest floating point number is mant-1 << exp-mantbits,
// unless mant-1 drops the significant bit and exp is not the minimum exp,
// in which case the next lowest is mant*2-1 << exp-mantbits-1.
// Either way, call it mantlo << explo-mantbits.
// Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1.
var mantlo uint64
var explo int
if mant > 1<<flt.mantbits || exp == minexp {
mantlo = mant - 1
explo = exp
} else {
mantlo = mant*2 - 1
explo = exp - 1
}
lower := new(decimal)
lower.Assign(mantlo*2 + 1)
lower.Shift(explo - int(flt.mantbits) - 1)
// The upper and lower bounds are possible outputs only if
// the original mantissa is even, so that IEEE round-to-even
// would round to the original mantissa and not the neighbors.
inclusive := mant%2 == 0
// Now we can figure out the minimum number of digits required.
// Walk along until d has distinguished itself from upper and lower.
for i := 0; i < d.nd; i++ {
l := byte('0') // lower digit
if i < lower.nd {
l = lower.d[i]
}
m := d.d[i] // middle digit
u := byte('0') // upper digit
if i < upper.nd {
u = upper.d[i]
}
// Okay to round down (truncate) if lower has a different digit
// or if lower is inclusive and is exactly the result of rounding
// down (i.e., and we have reached the final digit of lower).
okdown := l != m || inclusive && i+1 == lower.nd
// Okay to round up if upper has a different digit and either upper
// is inclusive or upper is bigger than the result of rounding up.
okup := m != u && (inclusive || m+1 < u || i+1 < upper.nd)
// If it's okay to do either, then round to the nearest one.
// If it's okay to do only one, do it.
switch {
case okdown && okup:
d.Round(i + 1)
return
case okdown:
d.RoundDown(i + 1)
return
case okup:
d.RoundUp(i + 1)
return
}
}
}
type decimalSlice struct {
d []byte
nd, dp int
neg bool
}
// %f: -ddddddd.ddddd
func fmtF(dst io.Writer, neg bool, d decimalSlice, prec int) (n int, err error) {
a := pool_floatBuffer.Get().(*byteSliceBuffer)
i := 0
// sign
if neg {
a.bytes[i] = '-'
i++
}
// integer, padded with zeros as needed.
if d.dp > 0 {
m := min(d.nd, d.dp)
copy(a.bytes[i:], d.d[:m])
i += m
for ; m < d.dp; m++ {
a.bytes[i] = '0'
i++
}
} else {
a.bytes[i] = '0'
i++
}
// fraction
if prec > 0 {
a.bytes[i] = '.'
i++
for j := 0; j < prec; j++ {
ch := byte('0')
if j := d.dp + j; 0 <= j && j < d.nd {
ch = d.d[j]
}
a.bytes[i] = ch
i++
}
}
n, err = dst.Write(a.bytes[0:i])
pool_floatBuffer.Put(a)
return
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}