-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathodc.py
178 lines (137 loc) · 5.29 KB
/
odc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import random
import smart_open
import pandas as pd
import click
N_POSITIVE = 99684
N_NEGATIVE = 996941
N_TOTAL = N_POSITIVE + N_NEGATIVE
POSITIVE_RATIO = N_POSITIVE / N_TOTAL
def read_submission(file, ordered):
df = pd.read_csv(file)
columns = df.columns.values
if ordered:
assert len(columns) == 1, 'For ordered scoring there must be only one column'
assert columns[0] == 'household_id', 'The first column must be household_id'
return df['household_id'].values
else:
assert len(columns) == 2, 'There must be only two columns'
assert columns[0] == 'household_id', 'The first column must be household_id'
assert columns[1] == 'advertise', 'The second column must be advertise'
return df.sort_values('advertise', ascending=False)['household_id'].values
def read_spends(file):
spend_lookup = {}
spenders = set()
with open(file) as f:
for l in f:
hhid, spend = l.strip().split(',')
hhid = int(hhid)
spend = float(spend)
spend_lookup[hhid] = spend
if spend > 0:
spenders.add(hhid)
return spend_lookup, spenders
def compute_revenue(all_hhids, advertise_hhids, spend_lookup):
revenue = 0
total_revenue = 0
for hhid in advertise_hhids:
revenue += spend_lookup[hhid]
for hhid in all_hhids:
total_revenue += spend_lookup[hhid]
return revenue, total_revenue
def compute_n_responders(all_hhids, advertise_hhids, spenders):
n_responders = 0
total_n_responders = 0
for hhid in advertise_hhids:
if hhid in spenders:
n_responders += 1
for hhid in all_hhids:
if hhid in spenders:
total_n_responders += 1
return n_responders, total_n_responders
@click.group()
def cli():
pass
@cli.command()
@click.option('--ratio', is_flag=True,
help='Score by computing top K using ratio instead of K=100,000')
@click.option('--ordered', is_flag=True,
help='Accept submission as ordered list of hhids from most to least likely to spend')
@click.option('--machine', is_flag=True, help="Output is machine readable")
@click.argument('spend_file')
@click.argument('submission_file')
def score(ratio, ordered, machine, spend_file, submission_file):
if not machine:
print('Scoring Options')
print('ratio:', ratio)
print('ordered:', ordered)
print('spend_file:', spend_file)
print('submission_file:', submission_file)
spend_lookup, spenders = read_spends(spend_file)
ordered_hhids = read_submission(submission_file, ordered)
if ratio:
n_examples = len(ordered_hhids)
n_advertise = int(n_examples * POSITIVE_RATIO)
else:
n_advertise = 100000
advertize_hhids = ordered_hhids[0:n_advertise]
revenue, total_revenue = compute_revenue(ordered_hhids, advertize_hhids, spend_lookup)
n_responders, n_total_responders = compute_n_responders(
ordered_hhids, advertize_hhids, spenders)
if machine:
print("{} {}".format(1.0 * revenue / total_revenue, 1.0 * n_responders / n_total_responders))
else:
print('Revenue:', revenue)
print('Possible Revenue:', total_revenue)
print('Fraction of Possible Revenue:', 1.0 * revenue / total_revenue)
print('Number of Responders:', n_responders)
print('Possible Number of Responders:', n_total_responders)
print('Fraction of Possible Responders', 1.0 * n_responders / n_total_responders)
def is_positive_example(line):
fields = line.split(',')
return float(fields[1]) != 0
@cli.command()
@click.option('--seed', type=int)
@click.argument('n_samples', type=int)
@click.argument('input_path', type=str)
@click.argument('output_path', type=str)
def sample(seed, n_samples, input_path, output_path):
if os.path.isdir(input_path):
print('Directory detected, using all files in directory')
files = [smart_open.smart_open(os.path.join(input_path, p)) for p in os.listdir(input_path)]
else:
print('Single file detected')
files = [smart_open.smart_open(input_path)]
output = open(output_path, 'w')
if seed is not None:
random.seed(seed)
total_positive = int(n_samples * POSITIVE_RATIO)
total_negative = n_samples - total_positive
print('Finding a total of {} examples, {} positive and {} negative'.format(
n_samples, total_positive, total_negative))
n_positive = 0
n_negative = 0
while n_positive + n_negative < n_samples:
if len(files) == 0:
raise Exception('There are not enough files to get {} examples'.format(n_samples))
random_index = random.randrange(len(files))
random_file = files[random_index]
try:
line = next(random_file).decode('utf8')
except StopIteration:
random_file.close()
files.pop(random_index)
is_positive = is_positive_example(line)
if is_positive and n_positive < total_positive:
output.write(line)
n_positive += 1
continue
if not is_positive and n_negative < total_negative:
output.write(line)
n_negative += 1
continue
for f in files:
f.close()
output.close()
if __name__ == '__main__':
cli()