-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsynthesis_mel.py
executable file
·209 lines (178 loc) · 7.17 KB
/
synthesis_mel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import argparse
from email.generator import Generator
import json
import os
from sklearn.utils import shuffle
import torch
import yaml
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from utils.model import get_model, get_param_num
from utils.tools import to_device, log, synth_one_sample, AttrDict
from model import AdaSpeechLoss
from dataset import Dataset
from evaluate import evaluate
import sys
sys.path.append("vocoder")
# from vocoder.models.hifigan import Generator
from vocoder.models.BigVGAN import BigVGAN as Generator
import numpy as np
import soundfile as sf
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def synth_one_sample_save(targets, predictions, vocoder, model_config, preprocess_config):
audios_path = os.path.join("/data/speech_data/libri_cctv_vocoder_fintune/", "wavs/")
mels_path = os.path.join("/data/speech_data/libri_cctv_vocoder_fintune/", "mels/")
for i in range(len(targets[0])):
basename = targets[0][i]
speakernames = targets[2][i]
mel_len = predictions[10][i].item()
mel_target = targets[6][i, :mel_len].detach().transpose(0, 1)
mel_prediction = predictions[1][i, :mel_len].detach().transpose(0, 1)
tmpname = speakernames+"_"+basename
if vocoder is not None:
from utils.model import vocoder_infer
wav_reconstruction = vocoder_infer(
mel_target.unsqueeze(0),
vocoder,
model_config,
preprocess_config,
)[0]
wav_prediction = None
else:
wav_reconstruction = wav_prediction = None
sampling_rate = preprocess_config["preprocessing"]["audio"][
"sampling_rate"
]
audio_normalized = wav_reconstruction / np.max(np.abs(wav_reconstruction))
audio_path = os.path.join(audios_path, tmpname+".wav")
mel_path = os.path.join(mels_path, tmpname+".npy")
if not os.path.exists(audio_path):
sf.write(audio_path, audio_normalized, sampling_rate)
else:
# print(audio_path," already exist!")
file = open("/workspace/nartts/AdaSpeech/error_files.txt", "a")
file.write(mel_path + "\n")
if not os.path.exists(mel_path):
np.save(
os.path.join(mel_path),
mel_prediction.cpu().numpy(),
)
else:
file = open("/workspace/nartts/AdaSpeech/error_files.txt", "a")
file.write(mel_path + "\n")
# print(mel_path," already exist!")
return wav_reconstruction, wav_prediction, speakernames+"_"+basename
def get_vocoder(config, checkpoint_path):
config = json.load(open(config, 'r', encoding='utf-8'))
config = AttrDict(config)
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
vocoder = Generator(config).to(device).eval()
vocoder.load_state_dict(checkpoint_dict['generator'])
vocoder.remove_weight_norm()
return vocoder
def main(args, configs):
print("Prepare training ...")
preprocess_config, model_config, train_config = configs
# Get dataset
dataset = Dataset(
"train.txt", preprocess_config, train_config, sort=True, drop_last=True
)
batch_size = train_config["optimizer"]["batch_size"]
group_size = 4 # Set this larger than 1 to enable sorting in Dataset
assert batch_size * group_size < len(dataset)
loader = DataLoader(
dataset,
shuffle = True,
batch_size=batch_size * group_size,
collate_fn=dataset.collate_fn,
num_workers=4,
)
# Prepare model
#
model, optimizer = get_model(args, configs, device, train=True)
model = nn.DataParallel(model)
num_param = get_param_num(model)
Loss = AdaSpeechLoss(preprocess_config, model_config).to(device)
print("Number of AdaSpeech Parameters:", num_param)
# Load vocoder
#vocoder = get_vocoder(model_config, device)
vocoder = get_vocoder(args.vocoder_config, args.vocoder_checkpoint)
# Init logger
for p in train_config["path"].values():
os.makedirs(p, exist_ok=True)
train_log_path = os.path.join(train_config["path"]["log_path"], "train")
val_log_path = os.path.join(train_config["path"]["log_path"], "val")
os.makedirs(train_log_path, exist_ok=True)
os.makedirs(val_log_path, exist_ok=True)
train_logger = SummaryWriter(train_log_path)
val_logger = SummaryWriter(val_log_path)
# Training
step = args.restore_step + 1
epoch = 1
total_step = train_config["step"]["total_step"]
synth_step = 1
phoneme_level_encoder_step = train_config["step"]["phoneme_level_encoder_step"]
outer_bar = tqdm(total=total_step, desc="Training", position=0)
outer_bar.n = args.restore_step
outer_bar.update()
while True:
inner_bar = tqdm(total=len(loader), desc="Epoch {}".format(epoch), position=1)
for batchs in loader:
for batch in batchs:
batch = to_device(batch, device)
# Forward
if step >= phoneme_level_encoder_step:
phoneme_level_predictor = True
exe_batch = batch + (phoneme_level_predictor, )
output = model(*(exe_batch))
else:
phoneme_level_predictor = False
exe_batch = batch + (phoneme_level_predictor, )
output = model(*(exe_batch))
if step % synth_step == 0:
wav_reconstruction, wav_prediction, tag = synth_one_sample_save(
batch,
output,
vocoder,
model_config,
preprocess_config,
)
if step == total_step:
quit()
step += 1
outer_bar.update(1)
inner_bar.update(1)
epoch += 1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--restore_step", type=int, default=0)
parser.add_argument(
"-p",
"--preprocess_config",
type=str,
required=True,
help="path to preprocess.yaml",
)
parser.add_argument(
"-m", "--model_config", type=str, required=True, help="path to model.yaml"
)
parser.add_argument(
"-t", "--train_config", type=str, required=True, help="path to train.yaml"
)
parser.add_argument(
"--vocoder_checkpoint", type=str, default=None, required= True, help="path to vocoder checkpoint"
)
parser.add_argument(
"--vocoder_config", type=str, default=None, required=True, help="path to vocoder config"
)
args = parser.parse_args()
# Read Config
preprocess_config = yaml.load(
open(args.preprocess_config, "r"), Loader=yaml.FullLoader
)
model_config = yaml.load(open(args.model_config, "r"), Loader=yaml.FullLoader)
train_config = yaml.load(open(args.train_config, "r"), Loader=yaml.FullLoader)
configs = (preprocess_config, model_config, train_config)
main(args, configs)