-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomponents.py
127 lines (110 loc) · 5.15 KB
/
components.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import numpy as np
from typing import ClassVar, Callable
from attrs import define, field
from utils import find_transform_similarity
@define(kw_only=True, eq=False)
class Pose:
UidPool : ClassVar[int] = 0
uid : int = field(default=None)
timestamp_ms : float | None = field(default=None)
frame_index : int = field()
keypoints_xy : np.ndarray = field() # shape (n, 2)
bones : np.ndarray | None = field(default=None)
keypoint_confidence : np.ndarray = field(default=None) # len(keypoints) == len(keypoint_confidence), invalid confidence <= 0
def __attrs_post_init__(self):
if self.uid is None:
self.uid = self.UidPool
Pose.UidPool += 1
if self.keypoint_confidence is None:
self.keypoint_confidence = np.ones(len(self.keypoints_xy), dtype=float)
else:
assert len(self.keypoints_xy) == len(self.keypoint_confidence), "keypoints and keypoint_confidence should have same length"
@define(kw_only=True, eq=False)
class Match:
source_pose : Pose | None = field(default=None)
target_pose : Pose | None = field(default=None)
transform : np.ndarray | None = field(default=None)
loss : float | None = field(default=None)
loss_function : Callable[[Pose, Pose], float] | None = field(default=None)
def update_transform(self):
shared_source_kps, shared_target_kps = self.get_shared_keypoints(self.source_pose, self.target_pose)
self.transform = find_transform_similarity(shared_source_kps, shared_target_kps)
return self.transform
def update_loss(self):
if self.loss_function is not None:
self.loss = self.loss_function(self.source_pose, self.target_pose)
return self.loss
if self.transform is None:
self.update_transform()
if self.source_pose.bones is not None and self.target_pose.bones is not None:
shared_bones = self.get_shared_bones(self.source_pose, self.target_pose)
kps_1 = self.source_pose.keypoints_xy @ self.transform[:2, :2] + self.transform[2,:2]
kps_2 = self.target_pose.keypoints_xy
self.loss = self.cosine_distance_with_bones(kps_1, kps_2, shared_bones)
return self.loss
shared_source_kps, shared_target_kps = self.get_shared_keypoints(self.source_pose, self.target_pose)
shared_source_kps = shared_source_kps @ self.transform[:2, :2] + self.transform[2,:2]
self.loss = self.cosine_distance(shared_source_kps, shared_target_kps)
return self.loss
@staticmethod
def get_shared_bones(pose_1: Pose, pose_2: Pose):
valid_mask = (pose_1.keypoint_confidence > 0) & (pose_2.keypoint_confidence > 0)
shared_bones = []
for bone in pose_1.bones:
if valid_mask[bone[0]] and valid_mask[bone[1]]:
shared_bones.append(bone)
return shared_bones
@staticmethod
def get_shared_keypoints(pose_1: Pose, pose_2 : Pose):
valid_mask = (pose_1.keypoint_confidence > 0) & (pose_2.keypoint_confidence > 0)
kps_1 = pose_1.keypoints_xy[valid_mask]
kps_2 = pose_2.keypoints_xy[valid_mask]
return kps_1, kps_2
@staticmethod
def cosine_distance(kps1, kps2):
kps1 = kps1.flatten()
kps2 = kps2.flatten()
cossim = kps1.dot(np.transpose(kps2)) / (np.linalg.norm(kps1) * np.linalg.norm(kps2))
cosdist = abs(1 - cossim)
cosdist = cosdist/len(kps1)
return cosdist
@staticmethod
def cosine_distance_with_bones(kps_1, kps_2, bones):
total_cosdist = 0
for bone in bones:
bone_vec_1 = kps_1[bone[1]] - kps_1[bone[0]]
bone_vec_2 = kps_2[bone[1]] - kps_2[bone[0]]
dist = (np.linalg.norm(bone_vec_1) * np.linalg.norm(bone_vec_2))
if dist == 0:
cossim = 1
else:
cossim = bone_vec_1.dot(np.transpose(bone_vec_2)) / dist
cosdist = abs(1 - cossim)
total_cosdist += cosdist
return total_cosdist + (13-len(bones)) * 0.5
if __name__ == "__main__":
import random
import cv2
bones = [
[2, 3], [2, 6], [3, 4], [4, 5],
[6, 7], [7, 8], [2, 9], [9, 10],
[10, 11], [2, 12], [12, 13], [13, 14],
[2, 1],
]
bones = np.array(bones, dtype=np.uint8)
bones = bones - 1
bones = None
kps1 = np.load("poses_seq\\111\\00226.npy")
kps2 = np.load("poses_seq\\111\\00226.npy")
keypoint_confidence1 = np.ones(len(kps1), dtype=np.float32)
keypoint_confidence1[kps1[:, 0] < 0] = 0
keypoint_confidence2 = np.ones(len(kps2), dtype=np.float32)
keypoint_confidence2[kps2[:, 0] < 0] = 0
rot_mat = cv2.getRotationMatrix2D((0.5, 0.5), 10, 1)
print(rot_mat)
kps2 = kps2 @ rot_mat[:2, :2] + rot_mat[:2, 2]
frame1 = Pose(keypoints_xy=kps1, frame_index=26, bones=bones, keypoint_confidence=keypoint_confidence1)
frame2 = Pose(keypoints_xy=kps2, frame_index=26, bones=bones, keypoint_confidence=keypoint_confidence2)
cur_match = Match(source_pose=frame1, target_pose=frame2)
loss = cur_match.update_loss()
print(loss)