forked from jrzaurin/pytorch-widedeep
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
93 lines (84 loc) · 2.78 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#!/usr/bin/env python3
# flake8: noqa
import os
import setuptools
pwd = os.path.dirname(__file__)
dev_status = {
"0.1": "Development Status :: 1 - Planning", # v0.1 - skeleton
"0.2": "Development Status :: 2 - Pre-Alpha", # v0.2 - some basic functionality
"0.3": "Development Status :: 3 - Alpha", # v0.3 - most functionality
"0.4": "Development Status :: 4 - Beta", # v0.4 - most functionality + doc
"1.0": "Development Status :: 5 - Production/Stable", # v1.0 - most functionality + doc + test # noqa
"1.1": "Development Status :: 5 - Production/Stable",
"2.0": "Development Status :: 6 - Mature", # v2.0 - new functionality?
}
with open(os.path.join(pwd, "VERSION")) as f:
version = f.read().strip()
assert len(version.split(".")) == 3, "bad version spec"
majorminor = version.rsplit(".", 1)[0]
extras = {}
extras["test"] = ["pytest", "pytest-cov", "codecov"]
extras["docs"] = [
"sphinx",
"sphinx_rtd_theme",
"recommonmark",
"sphinx-markdown-tables",
"sphinx-copybutton",
"sphinx-autodoc-typehints",
]
extras["quality"] = [
"black",
"isort",
"flake8",
]
extras["all"] = extras["test"] + extras["docs"] + extras["quality"]
# main setup kw args
setup_kwargs = {
"name": "pytorch-widedeep",
"version": version,
"description": "Combine tabular data with text and images using Wide and Deep models in Pytorch",
"long_description": open("pypi_README.md", "r", encoding="utf-8").read(),
"long_description_content_type": "text/markdown",
# "long_description": long_description,
"author": "Javier Rodriguez Zaurin",
"author_email": "jrzaurin@gmail.com",
"url": "https://github.com/jrzaurin/pytorch-widedeep",
"license": "MIT",
"install_requires": [
"pandas",
"numpy>=1.20.0",
"scipy",
"scikit-learn",
"gensim",
"spacy",
"opencv-contrib-python",
"imutils",
"tqdm",
"torch",
"torchvision",
"einops",
"wrapt",
"torchmetrics",
"ray[tune]",
"pyarrow",
"fastparquet",
],
"extras_require": extras,
"python_requires": ">=3.7.0",
"classifiers": [
dev_status[majorminor],
"Environment :: Other Environment",
"Framework :: Jupyter",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Operating System :: OS Independent",
"Programming Language :: Python",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
"zip_safe": True,
"package_data": {"pytorch_widedeep": ["datasets/data/*"]},
"packages": setuptools.find_packages(exclude=["test_*.py"]),
}
if __name__ == "__main__":
setuptools.setup(**setup_kwargs)