-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathindex.js
196 lines (178 loc) · 4.35 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
console.log("Hello Autoencoder 🚂");
import * as tf from "@tensorflow/tfjs-node";
// import canvas from "canvas";
// const { loadImage } = canvas;
import Jimp from "jimp";
import numeral from "numeral";
const W = 28;
main();
async function main() {
// Build the model
const { decoderLayers, autoencoder } = buildModel();
// load all image data
const images = await loadImages(5100);
// train the model
const x_train = tf.tensor2d(images.slice(0, 5000));
await trainModel(autoencoder, x_train, 200);
const saveResults = await autoencoder.save("file://public/model/");
console.log(autoencoder.summary());
// const autoencoder = await tf.loadLayersModel("file://public/model/model.json");
// test the model
const x_test = tf.tensor2d(images.slice(5000));
await generateTests(autoencoder, x_test);
// Create a new model with just the decoder
const decoder = createDecoder(decoderLayers);
const saveDecoder = await decoder.save("file://public/decoder/model/");
}
async function generateTests(autoencoder, x_test) {
const output = autoencoder.predict(x_test);
// output.print();
const newImages = await output.array();
for (let i = 0; i < newImages.length; i++) {
const img = newImages[i];
const buffer = [];
for (let n = 0; n < img.length; n++) {
const val = Math.floor(img[n] * 255);
buffer[n * 4 + 0] = val;
buffer[n * 4 + 1] = val;
buffer[n * 4 + 2] = val;
buffer[n * 4 + 3] = 255;
}
const image = new Jimp(
{
data: Buffer.from(buffer),
width: W,
height: W,
},
(err, image) => {
const num = numeral(i).format("0000");
image.write(`output/square${num}.png`);
}
);
}
}
function createDecoder(decoderLayers) {
const decoder = tf.sequential();
for (let layer of decoderLayers) {
const newLayer = tf.layers.dense({
units: layer.units,
activation: layer.activation,
inputShape: [layer.kernel.shape[0]],
});
decoder.add(newLayer);
newLayer.setWeights(layer.getWeights());
}
// const learningRate = 0.000001;
// const optimizer = tf.train.adam(learningRate);
decoder.compile({
optimizer: "adam",
loss: "meanSquaredError",
});
return decoder;
}
function buildModel() {
const autoencoder = tf.sequential();
// Build the model
// Encoder
autoencoder.add(
tf.layers.dense({
units: 256,
inputShape: [W * W],
activation: "relu",
})
);
autoencoder.add(
tf.layers.dense({
units: 128,
activation: "relu",
})
);
autoencoder.add(
tf.layers.dense({
units: 64,
activation: "relu",
})
);
autoencoder.add(
tf.layers.dense({
units: 16,
activation: "relu",
})
);
autoencoder.add(
tf.layers.dense({
units: 4,
activation: "sigmoid",
})
);
// How do I start from here?
// Decoder
let decoderLayers = [];
decoderLayers.push(
tf.layers.dense({
units: 16,
activation: "relu",
})
);
decoderLayers.push(
tf.layers.dense({
units: 64,
activation: "relu",
})
);
decoderLayers.push(
tf.layers.dense({
units: 128,
activation: "relu",
})
);
decoderLayers.push(
tf.layers.dense({
units: 256,
activation: "relu",
})
);
decoderLayers.push(
tf.layers.dense({
units: W * W,
activation: "sigmoid",
})
);
for (let layer of decoderLayers) {
autoencoder.add(layer);
}
// const learningRate = 0.001;
// const optimizer = tf.train.adam(learningRate);
autoencoder.compile({
optimizer: "adam",
loss: "meanSquaredError",
});
return { decoderLayers, autoencoder };
}
async function trainModel(autoencoder, x_train, epochs) {
await autoencoder.fit(x_train, x_train, {
epochs: epochs,
batch_size: 32,
shuffle: true,
verbose: true,
});
}
async function loadImages(total) {
const allImages = [];
for (let i = 0; i < total; i++) {
const num = numeral(i).format("0000");
const img = await Jimp.read(
`AutoEncoder_TrainingData/data/square${num}.png`
);
let rawData = [];
for (let n = 0; n < W * W; n++) {
let index = n * 4;
let r = img.bitmap.data[index + 0];
// let g = img.bitmap.data[n + 1];
// let b = img.bitmap.data[n + 2];
rawData[n] = r / 255.0;
}
allImages[i] = rawData;
}
return allImages;
}