forked from open-simh/simh
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpdp10_ksio.c
2303 lines (2029 loc) · 77.4 KB
/
pdp10_ksio.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* pdp10_ksio.c: PDP-10 KS10 I/O subsystem simulator
Copyright (c) 1993-2017, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
uba Unibus adapters
7-Mar-17 RMS Added BR level to vector display
22-Sep-05 RMS Fixed declarations (from Sterling Garwood)
25-Jan-04 RMS Added stub floating address routine
12-Mar-03 RMS Added logical name support
10-Oct-02 RMS Revised for dynamic table generation
Added SHOW IOSPACE routine
29-Sep-02 RMS Added variable vector, central map support
25-Jan-02 RMS Revised for multiple DZ11's
06-Jan-02 RMS Revised enable/disable support
23-Sep-01 RMS New IO page address constants
07-Sep-01 RMS Revised device disable mechanism
25-Aug-01 RMS Enabled DZ11
21-Aug-01 RMS Updated DZ11 disable
01-Jun-01 RMS Updated DZ11 vectors
12-May-01 RMS Fixed typo
The KS10 uses the PDP-11 Unibus for its I/O, via adapters. While
nominally four adapters are supported, in practice only 1 and 3
are implemented. The disks are placed on adapter 1, the rest of
the I/O devices on adapter 3. (adapter 4 IS used in some supported
configurations, but those devices haven't been emulated yet.)
In theory, we should maintain completely separate Unibuses, with
distinct PI systems. In practice, this simulator has so few devices
that we can get away with a single PI system, masking for which
devices are on adapter 1, and which on adapter 3. The Unibus
implementation is modeled on the Qbus in the PDP-11 simulator and
is described there.
The I/O subsystem is programmed by I/O instructions which create
Unibus operations (read, read pause, write, write byte). DMA is
the responsibility of the I/O device simulators, which also implement
Unibus to physical memory mapping.
The priority interrupt subsystem (and other privileged functions)
is programmed by I/O instructions with internal devices codes
(opcodes 700-702). These are dispatched here, although many are
handled in the memory management unit or elsewhere.
The ITS instructions are significantly different from the TOPS-10/20
instructions. They do not use the extended address calculation but
instead provide instruction variants (Q for Unibus adapter 1, I for
Unibus adapter 3) which insert the Unibus adapter number into the
effective address.
*/
#include "pdp10_defs.h"
#include <setjmp.h>
#include <ctype.h>
#include "sim_sock.h"
#include "sim_tmxr.h"
#define AUTO_MAXC 32 /* Maximum number of controllers */
#define AUTO_CSRBASE 0010
#define AUTO_CSRMAX 04000
#define AUTO_VECBASE 0300
#define UBMPAGE(x) (x & (PAG_VPN<<2)) /* UBA Map page field of 11 address */
#define XBA_MBZ 0400000 /* ba mbz */
#define eaRB (ea & ~1)
#define GETBYTE(ea,x) ((((ea) & 1)? (x) >> 8: (x)) & 0377)
#define UBNXM_FAIL(pa,op) \
n = ADDR2UBA (pa); \
if (n >= 0) \
ubcs[n] = ubcs[n] | UBCS_TMO | UBCS_NXD; \
pager_word = PF_HARD | PF_VIRT | PF_IO | \
((op == WRITEB)? PF_BYTE: 0) | \
(TSTF (F_USR)? PF_USER: 0) | (pa); \
ABORT (PAGE_FAIL)
/* Is Unibus address mapped to -10 memory */
#define TEN_MAPPED(ub,ba) ((ubmap[ub][PAG_GETVPN(((ba) & 0777777) >> 2)] & UMAP_VLD) != 0)
/* Translate UBA number in a PA to UBA index. 1,,* -> ubmap[0], all others -> ubmap[1] */
#define ADDR2UBA(x) (iocmap[GET_IOUBA (x)])
/* Unibus adapter data */
int32 ubcs[UBANUM] = { 0 }; /* status registers */
int32 ubmap[UBANUM][UMAP_MEMSIZE] = {{ 0 }}; /* Unibus maps */
int32 int_req = 0; /* interrupt requests */
int32 autcon_enb = 1; /* auto configure enabled */
/* Map IO controller numbers to Unibus adapters: -1 = non-existent */
static int iocmap[IO_N_UBA] = { /* map I/O ext to UBA # */
-1, 0, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
};
static const int32 ubabr76[UBANUM] = {
INT_UB1 & (INT_IPL7 | INT_IPL6), INT_UB3 & (INT_IPL7 | INT_IPL6)
};
static const int32 ubabr54[UBANUM] = {
INT_UB1 & (INT_IPL5 | INT_IPL4), INT_UB3 & (INT_IPL5 | INT_IPL4)
};
static const uint32 iplmask[4] = {
INT_IPL4, INT_IPL5, INT_IPL6, INT_IPL7
};
/* Masks for Unibus quantities */
#define M_BYTE (0xFF)
#define M_WORD (0xFFFF)
#define M_WORD18 (0777777)
#define M_LH (0777777000000)
#define M_RH (0000000777777)
/* Bits to shift for each Unibus byte */
#define V_BYTE0 (18)
#define V_BYTE1 (26)
#define V_BYTE2 (0)
#define V_BYTE3 (8)
#define V_WORD0 V_BYTE0
#define V_WORD1 V_BYTE2
/* Bits to preserve when writing each Unibus byte.
* This excludes the XX bits so they are cleared.
*/
#define M_BYTE0 (~INT64_C (0000377000000)) /* Clear byte 0 */
#define M_BYTE1 (~INT64_C (0777400000000)) /* Clear byte 1 + XX */
#define M_BYTE2 (~INT64_C (0000000000377)) /* Clear byte 2 */
#define M_BYTE3 (~INT64_C (0000000777400)) /* Clear byte 3 + XX */
#define M_WORD0 (~INT64_C (0777777000000)) /* Clear word 0 + XX */
#define M_WORD1 (~INT64_C (0000000777777)) /* Clear word 1 + XX */
extern int32 pi_eval (void);
t_stat ubmap_rd (int32 *data, int32 addr, int32 access);
t_stat ubmap_wr (int32 data, int32 addr, int32 access);
t_stat ubs_rd (int32 *data, int32 addr, int32 access);
t_stat ubs_wr (int32 data, int32 addr, int32 access);
t_stat rd_zro (int32 *data, int32 addr, int32 access);
t_stat wr_nop (int32 data, int32 addr, int32 access);
t_stat uba_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat uba_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat uba_reset (DEVICE *dptr);
void uba_debug_dma_in (uint32 ba, a10 pa_start, a10 pa_end);
void uba_debug_dma_out (uint32 ba, a10 pa_start, a10 pa_end);
d10 ReadIO (a10 ea);
void WriteIO (a10 ea, d10 val, int32 mode);
/* Unibus adapter data structures
uba_dev UBA device descriptor
uba_unit UBA units
uba_reg UBA register list
*/
DIB ubmp1_dib = { IOBA_UBMAP1, IOLN_UBMAP1, &ubmap_rd, &ubmap_wr, 0 };
DIB ubmp3_dib = { IOBA_UBMAP3, IOLN_UBMAP3, &ubmap_rd, &ubmap_wr, 0 };
DIB ubcs1_dib = { IOBA_UBCS1, IOLN_UBCS1, &ubs_rd, &ubs_wr, 0 };
DIB ubcs3_dib = { IOBA_UBCS3, IOLN_UBCS3, &ubs_rd, &ubs_wr, 0 };
DIB ubmn1_dib = { IOBA_UBMNT1, IOLN_UBMNT1, &rd_zro, &wr_nop, 0 };
DIB ubmn3_dib = { IOBA_UBMNT3, IOLN_UBMNT3, &rd_zro, &wr_nop, 0 };
DIB msys_dib = { 00100000, 1, &rd_zro, &wr_nop, 0 };
UNIT uba_unit[] = {
{ UDATA (NULL, UNIT_FIX, UMAP_MEMSIZE) },
{ UDATA (NULL, UNIT_FIX, UMAP_MEMSIZE) }
};
REG uba_reg[] = {
{ ORDATAD (INTREQ, int_req, 32, "interrupt request"), REG_RO },
{ ORDATAD (UB1CS, ubcs[0], 18, "Unibus adapter 1 control/status") },
{ ORDATAD (UB3CS, ubcs[1], 18, "Unibus adapter 3 control/status") },
{ NULL }
};
#define DBG_DMA_IN 0x0001 /* trace dma input transfers */
#define DBG_DMA_OUT 0x0002 /* trace dma output transfers */
#define DBG_DMA_NXM 0x0004 /* trace dma nxm errors */
DEBTAB uba_debug[] = {
{"IN", DBG_DMA_IN},
{"OUT", DBG_DMA_OUT},
{"NXM", DBG_DMA_NXM},
{0}
};
DEVICE uba_dev = {
"UBA", uba_unit, uba_reg, NULL,
UBANUM, 8, UMAP_ASIZE, 1, 8, 32,
&uba_ex, &uba_dep, &uba_reset,
NULL, NULL, NULL,
NULL, DEV_DEBUG, 0, uba_debug
};
/* PDP-11 I/O structures */
DIB *dib_tab[DIB_MAX]; /* run-time DIBs */
int32 (*int_ack[32])(void); /* int ack routines */
int32 int_vec[32]; /* int vectors */
DIB *std_dib[] = { /* standard DIBs */
&ubmp1_dib,
&ubmp3_dib,
&ubcs1_dib,
&ubcs3_dib,
&ubmn1_dib,
&ubmn3_dib,
&msys_dib,
NULL
};
/* IO 710 (DEC) TIOE - test I/O word, skip if zero
(ITS) IORDI - read word from Unibus 3
returns TRUE if skip, FALSE otherwise
*/
t_bool io710 (int32 ac, a10 ea)
{
d10 val;
if (Q_ITS) /* IORDI */
AC(ac) = ReadIO (IO_UBA3 | ea);
else { /* TIOE */
val = ReadIO (ea); /* read word */
if ((AC(ac) & val) == 0)
return TRUE;
}
return FALSE;
}
/* IO 711 (DEC) TION - test I/O word, skip if non-zero
(ITS) IORDQ - read word from Unibus 1
returns TRUE if skip, FALSE otherwise
*/
t_bool io711 (int32 ac, a10 ea)
{
d10 val;
if (Q_ITS) /* IORDQ */
AC(ac) = ReadIO (IO_UBA1 | ea);
else { /* TION */
val = ReadIO (ea); /* read word */
if ((AC(ac) & val) != 0)
return TRUE;
}
return FALSE;
}
/* IO 712 (DEC) RDIO - read I/O word, addr in ea
(ITS) IORD - read I/O word, addr in M[ea]
*/
d10 io712 (a10 ea)
{
return ReadIO (ea); /* RDIO, IORD */
}
/* IO 713 (DEC) WRIO - write I/O word, addr in ea
(ITS) IOWR - write I/O word, addr in M[ea]
*/
void io713 (d10 val, a10 ea)
{
WriteIO (ea, val, WRITE); /* WRIO, IOWR */
return;
}
/* IO 714 (DEC) BSIO - set bit in I/O address
(ITS) IOWRI - write word to Unibus 3
*/
void io714 (d10 val, a10 ea)
{
d10 temp;
if (Q_ITS) /* IOWRI */
WriteIO (IO_UBA3 | ea, val, WRITE);
else {
temp = ReadIO (ea); /* BSIO */
temp = temp | val;
WriteIO (ea, temp, WRITE);
}
return;
}
/* IO 715 (DEC) BCIO - clear bit in I/O address
(ITS) IOWRQ - write word to Unibus 1
*/
void io715 (d10 val, a10 ea)
{
d10 temp;
if (Q_ITS) /* IOWRQ */
WriteIO (IO_UBA1 | ea, val, WRITE);
else {
temp = ReadIO (ea); /* BCIO */
temp = temp & ~val;
WriteIO (ea, temp, WRITE);
}
return;
}
/* IO 720 (DEC) TIOEB - test I/O byte, skip if zero
(ITS) IORDBI - read byte from Unibus 3
returns TRUE if skip, FALSE otherwise
*/
t_bool io720 (int32 ac, a10 ea)
{
d10 val;
if (Q_ITS) { /* IORDBI */
val = ReadIO (IO_UBA3 | eaRB);
AC(ac) = GETBYTE (ea, val);
}
else { /* TIOEB */
val = ReadIO (eaRB);
val = GETBYTE (ea, val);
if ((AC(ac) & val) == 0)
return TRUE;
}
return FALSE;
}
/* IO 721 (DEC) TIONB - test I/O word, skip if non-zero
(ITS) IORDBQ - read word from Unibus 1
returns TRUE if skip, FALSE otherwise
*/
t_bool io721 (int32 ac, a10 ea)
{
d10 val;
if (Q_ITS) { /* IORDBQ */
val = ReadIO (IO_UBA1 | eaRB);
AC(ac) = GETBYTE (ea, val);
}
else { /* TIONB */
val = ReadIO (eaRB);
val = GETBYTE (ea, val);
if ((AC(ac) & val) != 0)
return TRUE;
}
return FALSE;
}
/* IO 722 (DEC) RDIOB - read I/O byte, addr in ea
(ITS) IORDB - read I/O byte, addr in M[ea]
*/
d10 io722 (a10 ea)
{
d10 val;
val = ReadIO (eaRB); /* RDIOB, IORDB */
return GETBYTE (ea, val);
}
/* IO 723 (DEC) WRIOB - write I/O byte, addr in ea
(ITS) IOWRB - write I/O byte, addr in M[ea]
*/
void io723 (d10 val, a10 ea)
{
WriteIO (ea, val & M_BYTE, WRITEB); /* WRIOB, IOWRB */
return;
}
/* IO 724 (DEC) BSIOB - set bit in I/O byte address
(ITS) IOWRBI - write byte to Unibus 3
*/
void io724 (d10 val, a10 ea)
{
d10 temp;
val = val & M_BYTE;
if (Q_ITS) /* IOWRBI */
WriteIO (IO_UBA3 | ea, val, WRITEB);
else {
temp = ReadIO (eaRB); /* BSIOB */
temp = GETBYTE (ea, temp);
temp = temp | val;
WriteIO (ea, temp, WRITEB);
}
return;
}
/* IO 725 (DEC) BCIOB - clear bit in I/O byte address
(ITS) IOWRBQ - write byte to Unibus 1
*/
void io725 (d10 val, a10 ea)
{
d10 temp;
val = val & M_BYTE;
if (Q_ITS) /* IOWRBQ */
WriteIO (IO_UBA1 | ea, val, WRITEB);
else {
temp = ReadIO (eaRB); /* BCIOB */
temp = GETBYTE (ea, temp);
temp = temp & ~val;
WriteIO (ea, temp, WRITEB);
}
return;
}
/* Read and write I/O devices.
These routines are the linkage between the 64b world of the main
simulator and the 32b world of the device simulators.
*/
/* UBReadIO and UBWriteIO handle the device lookup and access
* These are used for all IO space accesses. They return status.
*
* ReadIO and WriteIO are used by the CPU instructions, and generate
* UBA NXM page fails for unassigned IO addresses.
*/
static t_stat UBReadIO (int32 *data, int32 ba, int32 access)
{
uint32 pa = (uint32) ba;
int32 i, val;
DIB *dibp;
for (i = 0; (dibp = dib_tab[i]); i++ ) {
if ((pa >= dibp->ba) &&
(pa < (dibp->ba + dibp->lnt))) {
dibp->rd (&val, pa, access);
pi_eval ();
*data = val;
return SCPE_OK;
}
}
return SCPE_NXM;
}
d10 ReadIO (a10 ea)
{
uint32 pa = (uint32) ea;
int32 n, val;
if (UBReadIO (&val, pa, READ) == SCPE_OK)
return ((d10) val);
UBNXM_FAIL (pa, READ);
}
static t_stat UBWriteIO (int32 data, int32 ba, int32 access)
{
uint32 pa = (uint32) ba;
int32 i;
DIB *dibp;
for (i = 0; (dibp = dib_tab[i]); i++ ) {
if ((pa >= dibp->ba) &&
(pa < (dibp->ba + dibp->lnt))) {
if ((dibp->flags & DIB_M_REGSIZE) == DIB_REG16BIT) {
data &= M_WORD;
}
dibp->wr (data, ba, access);
pi_eval ();
return SCPE_OK;
}
}
return SCPE_NXM;
}
void WriteIO (a10 ea, d10 val, int32 mode)
{
uint32 pa = (uint32) ea;
int32 n;
if (UBWriteIO ((int32) val, (int32) pa, mode) == SCPE_OK)
return;
UBNXM_FAIL (pa, mode);
}
/* Mapped read and write routines - used by standard Unibus devices on Unibus 1
* I/O space accesses will work. Note that Unibus addresses with bit 17 set can
* not be mapped by the UBA, so I/O space (and more) can not be mapped to -10 memory.
*/
static a10 Map_Addr10 (a10 ba, int32 ub, int32 *ubmp)
{
a10 pa10;
int32 vpn = PAG_GETVPN (ba >> 2); /* get PDP-10 page number */
int32 ubm;
if ((vpn >= UMAP_MEMSIZE) || (ba & XBA_MBZ)) { /* Validate bus address */
if (ubmp)
*ubmp = 0;
return -1;
}
ubm = ubmap[ub][vpn];
if (ubmp)
*ubmp = ubm;
if ((ubm & UMAP_VLD) == 0) /* Ensure map entry is valid */
return -1;
pa10 = (ubm + PAG_GETOFF (ba >> 2)) & PAMASK;
return pa10;
}
/* Routines for Bytes, Words (16-bit) and Words (18-bit).
*
* Note that the byte count argument is always BYTES, even if
* the unit transfered is a word. This is for compatibility with
* the 11/VAX system Unibus; these routines abstract DMA for all
* U/Q device simulations.
*
* All return the number of bytes NOT transferred; 0 means success.
* A non-zero return implies a NXM was encountered.
*
* Unaligned accesses to 16/18-bit words in IOSPACE are a STOP condition.
* (Should be in memory too, but some devices are lazy.)
*
* Unibus memory is mapped into 36-bit words so that 16-bit
* values appear in 18-bit half-words, and PDP10 byte pointers will
* increment through 16-bit (but not 8-bit) data. Viewed as bytes or
* words from the PDP10, memory looks like this:
*
* +-----+-----------+------------+-------+------------+------------+
* | 0 1 | 2 9 | 10 17 | 18 19 | 20 27| 28 35 | PDP10 bits
* +-----+-----------+------------+-------+------------+------------+
* | X X | BYTE 1<01>| BYTE 0<00> | X X | BYTE 3<11> | BYTE 2<10> | PDP11 bytes
* +-----+-----------+------------+-------+------------+------------+
* | X X | WORD 0 <00> | X X | WORD 1 <10> | PDP11 words
* +-----+-----------+------------+-------+------------+------------+
*
* <nn> are the values of the two low-order address bits as viewed on
* the Unibus.
*
* The bits marked XX are written as zero for 8 and 16 bit transfers
* and with data from the Unibus parity lines for 18 bit transfers.
* In a -10 read-modify-write cycle, they are cleared if the high byte
* of the adjacent word is written, and preserved otherwise.
*
* Unibus addressing does not change with 18-bit transfers; they are
* accounted for as 2 bytes. <0:1> are bits <17:16> of word 0;
* <18:19> are bits <17:16> of word 1.
*
* Normal writes assume that DMA will access sequential Unibus addresses.
* The UBA optimizes this by writing NPR data to <00> addresses
* without preserving the rest of the -10 word. This allows a memory
* write cycle, rather than the read-modify-write cycle required to
* preserve the rest of the word. The 'read reverse' bit in the UBA
* map forces a read-modify-write on all addresses.
*
* 16-bit transfers (the d18 bit in the map selects) write 0s into
* the correspnding X bits when <00> or <10> are written.
*
* Address mapping uses bits <1:0> of the Unibus address to select
* the byte as indicated above. Bits <10:2> are the offset within
* the PDP10 page; thus Unibus addressing assumes 4 bytes/PDP10 word.
*
* 9 bits = 512 words/PDP10 page = 2048 bytes / Unibus page
*
* Bits 16:11 select a UBA mapping register, which indicates whether
* PDP10 memory at that address is accessible, and if so, provides
* PDP10 bus address bits that replace and extend the Unibus bits.
*
* Unibus addresses with bit 17 set do not map PDP10 memory. The
* high end is reserved for Unibus IO space. The rest is used for
* UBA maintenance modes (not simulated).
*
* IO space accesses may have side effects in the device; an aligned
* read of two bytes is NOT equivalent to two one byte reads of the
* same addresses.
*
* The memory access in these routines is optimized to minimize UBA
* page table lookups and shift/merge operations with PDP10 memory.
*
* Memory transfers happen in up to 3 pieces:
* head : 0-3 bytes to an aligned PDP10 word (UB address 000b)
* body : As many PDP10 whole words as possible (4 bytes 32/36 bits)
* tail : 0-3 bytes remaining after the body.
*/
int32 Map_ReadB (uint32 ba, int32 bc, uint8 *buf)
{
uint32 ea, ofs, cp, np;
int32 seg;
a10 pa10 = ~0u;
d10 m;
uint32 dpy_ba = ba;
a10 dpy_pa10 = ~0u;
if ((ba & ~((IO_M_UBA<<IO_V_UBA)|0017777)) == 0760000) {
/* IOPAGE: device register read */
int32 csr;
while (bc) {
if (UBReadIO (&csr, ba & ~1, READ) != SCPE_OK)
break;
*buf++ = (ba & 1)? ((csr >> 8) & 0xff): csr & 0xff;
ba++;
bc--;
}
return bc;
}
/* Memory */
if (bc == 0)
return 0;
cp = ~ba;
ofs = ba & 3;
seg = (4 - ofs) & 3;
if (seg) { /* Unaligned head */
if (seg > bc)
seg = bc;
cp = UBMPAGE (ba); /* Only one word, can't cross page */
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL); /* map addr */
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */
uba_debug_dma_nxm ("Read Byte", pa10, ba, bc);
return bc; /* return bc */
}
m = M[pa10++];
ba += seg;
bc -= seg;
switch (ofs) {
case 1:
*buf++ = (uint8) ((m >> V_BYTE1) & M_BYTE);
if (!--seg)
break;
case 2:
*buf++ = (uint8) (m & M_BYTE); /* V_BYTE2 */
if (!--seg)
break;
case 3:
*buf++ = (uint8) ((m >> V_BYTE3) & M_BYTE);
--seg;
break;
default:
ASSURE (FALSE);
}
if (bc == 0) {
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10);
return 0;
}
} /* Head */
/* At this point, ba is aligned. Therefore, ea<1:0> are the tail's length */
ea = ba + bc;
seg = bc - (ea & 3);
if (seg > 0) { /* Body: Whole PDP-10 words, 4 bytes */
ASSURE (((seg & 3) == 0) && (bc >= seg));
dpy_ba = ba;
bc -= seg;
for ( ; seg; seg -= 4, ba += 4) { /* aligned longwords */
np = UBMPAGE (ba);
if (np != cp) { /* New (or first) page? */
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10);
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL);/* map addr */
dpy_ba = ba;
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) {/* inv map or NXM? */
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */
uba_debug_dma_nxm ("Read Byte", pa10, ba, bc);
return (bc + seg); /* return bc */
}
cp = np;
}
m = M[pa10++]; /* Next word from -10 */
buf[2] = (uint8) (m & M_BYTE); /* Byte 2 */
m >>= 8;
buf[3] = (uint8) (m & M_BYTE); /* Byte 3 */
m >>= 10;
buf[0] = (uint8) (m & M_BYTE); /* Byte 0 */
m >>= 8;
buf[1] = (uint8) (m & M_BYTE); /* Byte 1 */
buf += 4;
}
} /* Body */
/* Tail: partial -10 word, must be aligned. 1-3 bytes */
ASSURE ((bc >= 0) && ((ba & 3) == 0));
if (bc) {
ASSURE (bc <= 3);
np = UBMPAGE (ba); /* Only one word, last possible page crossing */
if (np != cp) { /* New (or first) page? */
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10);
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL);/* map addr */
dpy_ba = ba;
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) {/* inv map or NXM? */
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */
uba_debug_dma_nxm ("Read Byte", pa10, ba, bc);
return (bc); /* return bc */
}
}
m = M[pa10++];
switch (bc) {
case 3:
buf[2] = (uint8) (m & M_BYTE); /* V_BYTE2 */
case 2:
buf[1] = (uint8) ((m >> V_BYTE1) & M_BYTE);
case 1:
buf[0] = (uint8) ((m >> V_BYTE0) & M_BYTE);
break;
default:
ASSURE (FALSE);
}
}
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10);
return 0;
}
int32 Map_ReadW (uint32 ba, int32 bc, uint16 *buf)
{
uint32 ea, cp, np;
int32 seg;
a10 pa10 = ~0u;
d10 m;
uint32 dpy_ba = ba;
a10 dpy_pa10 = ~0u;
if ((ba & ~((IO_M_UBA<<IO_V_UBA)|0017777)) == 0760000) {
/* IOPAGE: device register read */
int32 csr;
if ((ba | bc) & 1)
ABORT (STOP_IOALIGN);
while (bc) {
if (UBReadIO (&csr, ba, READ) != SCPE_OK)
break;
*buf++ = (uint16)csr;
ba += 2;
bc -= 2;
}
return bc;
}
/* Memory */
if (bc == 0)
return 0;
ba &= ~1;
if (bc & 1)
ABORT (STOP_IOALIGN);
cp = ~ba;
seg = (4 - (ba & 3)) & 3;
if (seg) { /* Unaligned head, can only be WORD1 */
ASSURE ((ba & 2) && (seg == 2));
if (seg > bc)
seg = bc;
cp = UBMPAGE (ba); /* Only one word, can't cross page */
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL); /* map addr */
dpy_ba = ba;
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */
uba_debug_dma_nxm ("Read Word", pa10, ba, bc);
return bc; /* return bc */
}
ba += seg;
*buf++ = (uint16) (M[pa10++] & M_WORD);
if ((bc -= seg) == 0) {
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10);
return 0;
}
} /* Head */
ea = ba + bc;
seg = bc - (ea & 3);
if (seg > 0) {
ASSURE (((seg & 3) == 0) && (bc >= seg));
bc -= seg;
for ( ; seg; seg -= 4, ba += 4) { /* aligned longwords */
np = UBMPAGE (ba);
if (np != cp) { /* New (or first) page? */
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10);
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL);/* map addr */
dpy_ba = ba;
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */
uba_debug_dma_nxm ("Read Word", pa10, ba, bc);
return (bc + seg); /* return bc */
}
cp = np;
}
m = M[pa10++]; /* Next word from -10 */
buf[1] = (uint16) (m & M_WORD); /* Bytes 3,,2 */
m >>= 18;
buf[0] = (uint16) (m & M_WORD); /* Bytes 1,,0 */
buf += 2;
}
} /* Body */
/* Tail: partial word, must be aligned, can only be WORD0 */
ASSURE ((bc >= 0) && ((ba & 3) == 0));
if (bc) {
ASSURE (bc == 2);
np = UBMPAGE (ba); /* Only one word, last possible page crossing */
if (np != cp) { /* New (or first) page? */
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10);
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL);/* map addr */
dpy_ba = ba;
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) {/* inv map or NXM? */
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */
uba_debug_dma_nxm ("Read Word", pa10, ba, bc);
return (bc); /* return bc */
}
}
*buf = (uint16) ((M[pa10++] >> V_WORD0) & M_WORD);
}
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10);
return 0;
}
/* Word reads returning 18-bit data
*
* Identical to 16-bit reads except that buffer is uint32
* and masked to 18 bits.
*/
int32 Map_ReadW18 (uint32 ba, int32 bc, uint32 *buf)
{
uint32 ea, cp, np;
int32 seg;
a10 pa10 = ~0u;
d10 m;
uint32 dpy_ba = ba;
a10 dpy_pa10 = ~0u;
if ((ba & ~((IO_M_UBA<<IO_V_UBA)|0017777)) == 0760000) {
/* IOPAGE: device register read */
int32 csr;
if ((ba | bc) & 1)
ABORT (STOP_IOALIGN);
while (bc) {
if (UBReadIO (&csr, ba, READ) != SCPE_OK)
break;
*buf++ = (uint32)csr;
ba += 2;
bc -= 2;
}
return bc;
}
/* Memory */
if (bc == 0)
return 0;
ba &= ~1;
if (bc & 1)
ABORT (STOP_IOALIGN);
cp = ~ba;
seg = (4 - (ba & 3)) & 3;
if (seg) { /* Unaligned head */
ASSURE ((ba & 2) && (seg == 2));
if (seg > bc)
seg = bc;
cp = UBMPAGE (ba); /* Only one word, can't cross page */
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL); /* map addr */
dpy_ba = ba;
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */
uba_debug_dma_nxm ("Read 18b Word", pa10, ba, bc);
return bc; /* return bc */
}
ba += seg;
*buf++ = (uint32) (M[pa10++] & M_RH);
if ((bc -= seg) == 0) {
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10);
return 0;
}
} /* Head */
ea = ba + bc;
seg = bc - (ea & 3);
if (seg > 0) {
ASSURE (((seg & 3) == 0) && (bc >= seg));
bc -= seg;
for ( ; seg; seg -= 4, ba += 4) { /* aligned longwords */
np = UBMPAGE (ba);
if (np != cp) { /* New (or first) page? */
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10);
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL);/* map addr */
dpy_ba = ba;
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) {/* inv map or NXM? */
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */
uba_debug_dma_nxm ("Read 18b Word", pa10, ba, bc);
return (bc + seg); /* return bc */
}
cp = np;
}
m = M[pa10++]; /* Next word from -10 */
buf[1] = (uint32) (m & M_RH); /* Bytes 3,,2 */
m >>= 18;
buf[0] = (uint32) (m & M_RH); /* Bytes 1,,0 */
buf += 2;
}
} /* Body */
/* Tail: partial word, must be aligned */
ASSURE ((bc >= 0) && ((ba & 3) == 0));
if (bc) {
ASSURE (bc == 2);
np = UBMPAGE (ba); /* Only one word, last possible page crossing */
if (np != cp) { /* New (or first) page? */
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10);
dpy_pa10 = pa10 = Map_Addr10 (ba, 1, NULL);/* map addr */
dpy_ba = ba;
if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) { /* inv map or NXM? */
ubcs[1] = ubcs[1] | UBCS_TMO; /* UBA timeout */
uba_debug_dma_nxm ("Read 18b Word", pa10, ba, bc);
return (bc); /* return bc */
}
}
*buf++ = (uint32) ((M[pa10++] >> V_WORD0) & M_RH);
}
uba_debug_dma_out (dpy_ba, dpy_pa10, pa10);
return 0;
}
/* Word reads returning 36-bit data
*
* Identical to 16-bit reads except that buffer is d10
* and masked to 36 bits.
*/
int32 Map_ReadW36 (uint32 ba, int32 bc, d10 *buf)
{
uint32 ea, cp, np;
int32 seg;
a10 pa10 = ~0u;
int32 ub = ADDR2UBA (ba);
uint32 dpy_ba = ba;
a10 dpy_pa10 = ~0u;
if ((ba & ~((IO_M_UBA<<IO_V_UBA)|0017777)) == 0760000) {
/* IOPAGE: device register read */
int32 csr;
if ((ba | bc) & 3)
ABORT (STOP_IOALIGN);
while (bc) {
if (UBReadIO (&csr, ba, READ) != SCPE_OK)
break;
*buf++ = (uint32)csr;
ba += 2;
bc -= 2;
}
return bc;
}
/* Memory */
if (bc == 0)
return 0;
ba &= ~3;
if (bc & 3)
ABORT (STOP_IOALIGN);