forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dlpack.py
216 lines (186 loc) · 7.74 KB
/
test_dlpack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# -*- coding: utf-8 -*-
# Owner(s): ["module: tests"]
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_utils import TestCase, run_tests, IS_JETSON
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests, onlyCUDA, dtypes, skipMeta, skipCUDAIfRocm,
onlyNativeDeviceTypes)
from torch.testing._internal.common_dtype import all_types_and_complex_and
from torch.utils.dlpack import from_dlpack, to_dlpack
class TestTorchDlPack(TestCase):
exact_dtype = True
@skipMeta
@onlyNativeDeviceTypes
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_dlpack_capsule_conversion(self, device, dtype):
# DLpack does not explicitly support bool (xref dmlc/dlpack#75)
x = make_tensor((5,), dtype=dtype, device=device)
z = from_dlpack(to_dlpack(x))
self.assertEqual(z, x)
@skipMeta
@onlyNativeDeviceTypes
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_dlpack_protocol_conversion(self, device, dtype):
x = make_tensor((5,), dtype=dtype, device=device)
z = from_dlpack(x)
self.assertEqual(z, x)
@skipMeta
@onlyNativeDeviceTypes
def test_dlpack_shared_storage(self, device):
x = make_tensor((5,), dtype=torch.float64, device=device)
z = from_dlpack(to_dlpack(x))
z[0] = z[0] + 20.0
self.assertEqual(z, x)
@skipMeta
@onlyCUDA
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_dlpack_conversion_with_streams(self, device, dtype):
# Create a stream where the tensor will reside
stream = torch.cuda.Stream()
with torch.cuda.stream(stream):
# Do an operation in the actual stream
x = make_tensor((5,), dtype=dtype, device=device) + 1
# DLPack protocol helps establish a correct stream order
# (hence data dependency) at the exchange boundary.
# DLPack manages this synchronization for us, so we don't need to
# explicitly wait until x is populated
if IS_JETSON:
# DLPack protocol that establishes correct stream order
# does not behave as expected on Jetson
stream.synchronize()
stream = torch.cuda.Stream()
with torch.cuda.stream(stream):
z = from_dlpack(x)
stream.synchronize()
self.assertEqual(z, x)
@skipMeta
@onlyNativeDeviceTypes
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_from_dlpack(self, device, dtype):
x = make_tensor((5,), dtype=dtype, device=device)
y = torch.from_dlpack(x)
self.assertEqual(x, y)
@skipMeta
@onlyNativeDeviceTypes
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_from_dlpack_noncontinguous(self, device, dtype):
x = make_tensor((25,), dtype=dtype, device=device).reshape(5, 5)
y1 = x[0]
y1_dl = torch.from_dlpack(y1)
self.assertEqual(y1, y1_dl)
y2 = x[:, 0]
y2_dl = torch.from_dlpack(y2)
self.assertEqual(y2, y2_dl)
y3 = x[1, :]
y3_dl = torch.from_dlpack(y3)
self.assertEqual(y3, y3_dl)
y4 = x[1]
y4_dl = torch.from_dlpack(y4)
self.assertEqual(y4, y4_dl)
y5 = x.t()
y5_dl = torch.from_dlpack(y5)
self.assertEqual(y5, y5_dl)
@skipMeta
@onlyCUDA
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_dlpack_conversion_with_diff_streams(self, device, dtype):
stream_a = torch.cuda.Stream()
stream_b = torch.cuda.Stream()
# DLPack protocol helps establish a correct stream order
# (hence data dependency) at the exchange boundary.
# the `tensor.__dlpack__` method will insert a synchronization event
# in the current stream to make sure that it was correctly populated.
with torch.cuda.stream(stream_a):
x = make_tensor((5,), dtype=dtype, device=device) + 1
z = torch.from_dlpack(x.__dlpack__(stream_b.cuda_stream))
stream_a.synchronize()
stream_b.synchronize()
self.assertEqual(z, x)
@skipMeta
@onlyNativeDeviceTypes
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_from_dlpack_dtype(self, device, dtype):
x = make_tensor((5,), dtype=dtype, device=device)
y = torch.from_dlpack(x)
assert x.dtype == y.dtype
@skipMeta
@onlyCUDA
def test_dlpack_default_stream(self, device):
class DLPackTensor:
def __init__(self, tensor):
self.tensor = tensor
def __dlpack_device__(self):
return self.tensor.__dlpack_device__()
def __dlpack__(self, stream=None):
if torch.version.hip is None:
assert stream == 1
else:
assert stream == 0
capsule = self.tensor.__dlpack__(stream)
return capsule
# CUDA-based tests runs on non-default streams
with torch.cuda.stream(torch.cuda.default_stream()):
x = DLPackTensor(make_tensor((5,), dtype=torch.float32, device=device))
from_dlpack(x)
@skipMeta
@onlyCUDA
@skipCUDAIfRocm
def test_dlpack_convert_default_stream(self, device):
# tests run on non-default stream, so _sleep call
# below will run on a non-default stream, causing
# default stream to wait due to inserted syncs
torch.cuda.default_stream().synchronize()
# run _sleep call on a non-default stream, causing
# default stream to wait due to inserted syncs
side_stream = torch.cuda.Stream()
with torch.cuda.stream(side_stream):
x = torch.zeros(1, device=device)
torch.cuda._sleep(2**20)
self.assertTrue(torch.cuda.default_stream().query())
d = x.__dlpack__(1)
# check that the default stream has work (a pending cudaStreamWaitEvent)
self.assertFalse(torch.cuda.default_stream().query())
@skipMeta
@onlyNativeDeviceTypes
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_dlpack_tensor_invalid_stream(self, device, dtype):
with self.assertRaises(TypeError):
x = make_tensor((5,), dtype=dtype, device=device)
x.__dlpack__(stream=object())
@skipMeta
def test_dlpack_error_on_bool_tensor(self):
x = torch.tensor([True], dtype=torch.bool)
with self.assertRaises(RuntimeError):
to_dlpack(x)
# TODO: add interchange tests once NumPy 1.22 (dlpack support) is required
@skipMeta
def test_dlpack_export_requires_grad(self):
x = torch.zeros(10, dtype=torch.float32, requires_grad=True)
with self.assertRaisesRegex(RuntimeError, r"require gradient"):
x.__dlpack__()
@skipMeta
def test_dlpack_export_is_conj(self):
x = torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j])
y = torch.conj(x)
with self.assertRaisesRegex(RuntimeError, r"conjugate bit"):
y.__dlpack__()
@skipMeta
def test_dlpack_export_non_strided(self):
x = torch.sparse_coo_tensor([[0]], [1], size=(1,))
y = torch.conj(x)
with self.assertRaisesRegex(RuntimeError, r"strided"):
y.__dlpack__()
@skipMeta
def test_dlpack_normalize_strides(self):
x = torch.rand(16)
y = x[::3][:1]
self.assertEqual(y.shape, (1,))
self.assertEqual(y.stride(), (3,))
z = from_dlpack(y)
self.assertEqual(z.shape, (1,))
# gh-83069, make sure __dlpack__ normalizes strides
self.assertEqual(z.stride(), (1,))
instantiate_device_type_tests(TestTorchDlPack, globals())
if __name__ == '__main__':
run_tests()