-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_distill.py
285 lines (268 loc) · 12 KB
/
main_distill.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import copy
import os
import torch
import torch.nn as nn
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
from utils.experiman import manager
from data import *
from losses.distill import KnowledgeDistillationLoss
from models import get_clip_model
from trainers import DistillTrainer, StandardLoopConfig
from utils.masking import get_masking
from utils.misc import parse
from utils.optim import get_optim
def add_parser_argument(parser):
## ======================== Data ==========================
parser.add_argument('--dataset', default='imagenet', type=str)
parser.add_argument('--train_split', default='original', type=str)
parser.add_argument('--val_size', default=10240, type=int)
parser.add_argument('--data_split_seed', default=0, type=int)
parser.add_argument('--batch', default=512, type=int)
parser.add_argument('--num_workers', default=1, type=int)
parser.add_argument('--image_size', default=224, type=int)
parser.add_argument('--transform', default='clip', type=str)
## ======================= Model ==========================
parser.add_argument('--arch', type=str)
parser.add_argument('--arch_variant', default='zeroshot', type=str)
parser.add_argument('--load_pretrained', type=str)
parser.add_argument('--load_ckpt', type=str)
parser.add_argument('--load_run_name', type=str)
parser.add_argument('--load_run_number', type=str)
parser.add_argument('--teacher_run_name', type=str)
parser.add_argument('--teacher_run_number', type=str)
parser.add_argument('--freeze_backbone', action='store_true')
parser.add_argument('--sync_bn', action='store_true')
## ===================== Training =========================
parser.add_argument('--auto_resume', action='store_true')
parser.add_argument('--resume_ckpt', type=str)
parser.add_argument('--label_smooth', action='store_true')
parser.add_argument('--task', type=str)
parser.add_argument('--distill_mode', type=str)
parser.add_argument('--kd_temp', default=10, type=float)
parser.add_argument('--w_task', default=1, type=float)
parser.add_argument('--w_distill', default=30, type=float)
## ==================== Optimization ======================
parser.add_argument('--epoch', default=10, type=int)
parser.add_argument('--num_iters_train', type=int,
help="default: len(trainloader)")
parser.add_argument('--num_iters_test', type=int,
help="default: len(testloader)")
parser.add_argument('--num_iters_trainset_test', type=int,
help="default: len(raw_trainloader)")
parser.add_argument('--accum_steps', type=int, default=1)
parser.add_argument('--lr', default=3e-5, type=float)
parser.add_argument('--lr_bb', type=float)
parser.add_argument('--lr_schedule', default='1cycle', type=str)
parser.add_argument('--multistep_milestones', type=int, nargs='+')
parser.add_argument('--optimizer', default='adamw', type=str)
parser.add_argument('--adam_beta', default=0.9, type=float)
parser.add_argument('--weight_decay', default=1e-1, type=float)
parser.add_argument('--cyclic_step', type=float)
parser.add_argument('--onecycle_pct_start', default=0.02, type=float)
parser.add_argument('--grad_clip', default=1, type=float)
## ====================== Logging =========================
parser.add_argument('--log_period', default=5, type=int, metavar='LP',
help='log every LP iterations')
parser.add_argument('--ckpt_period', type=int, metavar='CP',
help='make checkpoints every CP epochs')
parser.add_argument('--test_period', default=1, type=int, metavar='TP',
help='test every TP epochs')
parser.add_argument('--trainset_test_period', type=int, metavar='TP',
help='test on training set every TP epochs')
parser.add_argument('--comment', default='', type=str)
## ==================== Experimental ======================
parser.add_argument('--distill_masking', type=str)
parser.add_argument('--save_mask', action='store_true')
def main():
local_rank = int(os.environ["LOCAL_RANK"])
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
device = torch.device(local_rank)
torch.cuda.set_device(device)
# Parse arguments and setup ExperiMan
parser = manager.get_basic_arg_parser()
add_parser_argument(parser)
opt = parser.parse_args()
if opt.resume_ckpt or opt.auto_resume:
opt.option_for_existing_dir = 'k'
manager.setup(opt, rank=rank, world_size=world_size,
third_party_tools=('tensorboard',))
if world_size > 1:
dist.init_process_group("nccl")
if rank == 0:
t = torch.tensor([opt.run_number + .1], device=device)
else:
t = torch.empty(1, device=device)
dist.broadcast(t, src=0)
opt.run_number = int(t.item())
manager.set_run_dir(manager.get_run_dir(opt.run_name, opt.run_number))
logger = manager.get_logger()
logger.info(f'==> Number of devices: {world_size}')
use_clip = opt.arch.startswith('clip')
# Data
logger.info('==> Preparing data')
dataset = get_dataset(opt.dataset, opt.data_dir, size=opt.image_size, transform=opt.transform)
assert opt.batch % world_size == 0
batch = opt.batch // world_size
data_kwargs = dict(
batch_size=batch, num_workers=opt.num_workers,
with_index=opt.save_mask,
train_split=opt.train_split, val_size=opt.val_size,
split_seed=opt.data_split_seed,
world_size=world_size, rank=rank)
if opt.val_size > 0:
trainloader, raw_trainloader, valloader, testloader = \
dataset.get_loader(**data_kwargs)
else:
trainloader, raw_trainloader, testloader = \
dataset.get_loader(**data_kwargs)
valloader = []
num_iters_train = parse(opt.num_iters_train, len(trainloader) // opt.accum_steps)
num_iters_val = len(valloader)
num_iters_trainset_test = parse(opt.num_iters_trainset_test, len(raw_trainloader))
num_iters_test = parse(opt.num_iters_test, len(testloader))
# Model
logger.info('==> Building models')
if use_clip:
model = get_clip_model(
arch=opt.arch,
dataset=dataset,
variant=opt.arch_variant,
model_dir=opt.load_pretrained,
device=device,
get_zeroshot_weights=(not (opt.load_ckpt or opt.load_run_name)),
)
else:
raise NotImplementedError()
if opt.freeze_backbone:
model.freeze_backbone()
if world_size > 1:
if opt.sync_bn:
logger.info('==> Using SyncBN')
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = DistributedDataParallel(model, device_ids=[local_rank])
models = {'model': model}
bare_model = model.module if world_size > 1 else model
# Criterions
criterions = {}
criterions['classification'] = nn.CrossEntropyLoss()
criterions['knowledge_distillation'] = KnowledgeDistillationLoss(opt.kd_temp)
criterions['feature_distillation'] = nn.MSELoss()
for criterion in criterions.values():
criterion.to(device)
# Optimizer
head_parameters = [
p for n, p in model.named_parameters() if 'backbone' not in n
]
if opt.freeze_backbone:
parameters = head_parameters
elif opt.lr_bb is not None:
parameters = [
{'params': bare_model.backbone.parameters(), 'lr': opt.lr_bb},
{'params': head_parameters}
]
else:
parameters = model.parameters()
optimizer = get_optim(
parameters=parameters,
optimizer_name=opt.optimizer,
lr=opt.lr,
schedule=opt.lr_schedule,
weight_decay=opt.weight_decay,
num_epochs=opt.epoch,
num_iters_train=num_iters_train,
cyclic_stepsize=opt.cyclic_step,
onecycle_pct_start=opt.onecycle_pct_start,
multistep_milestones=opt.multistep_milestones,
adam_beta=opt.adam_beta,
)
optimizers = {'optimizer': optimizer}
# Load
resume_ckpt = None
bare_model = model.module if world_size > 1 else model
if opt.auto_resume:
assert opt.resume_ckpt is None
load_path = os.path.join(manager.get_checkpoint_dir(), 'ckpt-last.pt')
if os.path.exists(load_path):
opt.resume_ckpt = 'ckpt-last.pt'
if opt.resume_ckpt:
load_path = os.path.join(manager.get_checkpoint_dir(), opt.resume_ckpt)
logger.info(f'==> Resume from checkpoint {load_path}')
resume_ckpt = torch.load(load_path, map_location='cpu')
elif opt.load_ckpt or opt.load_run_name:
if opt.load_ckpt:
load_path = opt.load_ckpt
else:
ckpt_dir = manager.get_checkpoint_dir(
opt.load_run_name, opt.load_run_number)
load_path = os.path.join(ckpt_dir, 'ckpt-last.pt')
logger.info(f'==> Loading model from {load_path}')
checkpoint = torch.load(load_path, map_location='cpu')
bare_model.load_state_dict(checkpoint['model'])
elif opt.load_pretrained:
if not use_clip:
logger.info(f'==> Loading pretrained backbone from {opt.load_pretrained}')
pretrained_dict = torch.load(opt.load_pretrained, map_location='cpu')
bare_model.backbone.load_pretrained(pretrained_dict)
else:
logger.info(f'==> Will train from scratch')
# Teacher model
def load_teacher_model(run_name, run_number):
teacher = copy.deepcopy(model).eval()
ckpt_dir = manager.get_checkpoint_dir(run_name, run_number)
load_path = os.path.join(ckpt_dir, 'ckpt-best.pt')
logger.info(f'==> Loading teacher model from {load_path}')
checkpoint = torch.load(load_path, map_location='cpu')
logger.info(f'==> Teacher test acc: {checkpoint["test_acc"]}')
bare_teacher = teacher.module if world_size > 1 else teacher
bare_teacher.load_state_dict(checkpoint['model'])
return teacher
teacher = load_teacher_model(opt.teacher_run_name, opt.teacher_run_number)
# Masking
masking = get_masking(opt.distill_masking, model=model, save_mask=opt.save_mask)
logger.info(f'Distillation masking: {masking}')
# Trainer
loop_configs = [
StandardLoopConfig('train', dataset, trainloader,
training=True, n_iterations=num_iters_train,
n_computation_steps=opt.accum_steps),
StandardLoopConfig('val', dataset, valloader,
training=False, n_iterations=num_iters_val,
for_best_meter=True),
StandardLoopConfig('test-trainset', dataset, raw_trainloader,
training=False, n_iterations=num_iters_trainset_test,
run_every_n_epochs=opt.trainset_test_period,
run_at_checkpoint=False),
StandardLoopConfig('test-testset', dataset, testloader,
training=False, n_iterations=num_iters_test,
run_every_n_epochs=opt.test_period),
]
trainer = DistillTrainer(
manager=manager,
models=models,
criterions=criterions,
n_epochs=opt.epoch,
loop_configs=loop_configs,
optimizers=optimizers,
log_period=opt.log_period,
ckpt_period=opt.ckpt_period,
device=device,
keep_eval_mode=opt.freeze_backbone,
resume_ckpt=resume_ckpt,
num_classes=dataset.num_classes,
teacher=teacher,
masking=masking,
)
trainer.train()
if __name__ == "__main__":
# Set the environment variables if not launched by torchrun
if 'RANK' not in os.environ:
os.environ['RANK'] = '0'
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = os.environ['RANK']
if 'WORLD_SIZE' not in os.environ:
os.environ['WORLD_SIZE'] = '1'
if 'LOCAL_WORLD_SIZE' not in os.environ:
os.environ['LOCAL_WORLD_SIZE'] = os.environ['WORLD_SIZE']
main()