-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtests.py
198 lines (145 loc) · 6.17 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from asyncio.log import logger
import json
from typing import Any, Callable, Dict, Tuple
from .execution_time import get_execution_time
from .data_generator import generate_data
import cholesky_factorization as Cholesky_factorization
import gaussian_elimination as Gaussian_elimination
import linear_system_solver as Linear_sistem
import numpy as np
ALGORITHM = "cholesky"
def simple_test(size=100, seed=20, method="column", jit=False) -> Tuple[np.array, Tuple[int, int]]:
'''
Risolve un dato Sistema Lineare con la fattorizzazione di Cholesky.
inputs:
A: matrice che rappresenta il Sistema
b: vettore dei termini noti
jit: applica la JIT per migliorare le performance di Cholesky
returns:
Tuple(
x -> soluzione del sistema
Tuple (
c, -> tempo (in ms) impiegato per risolvere Cholesky
l -> tempo (in ms) impiegato per risolvere il Sistema
)
)
'''
# print(f"fun: {ALGORITHM}")
def cholesky():
# --- Visualizzo i dati iniziali --- #
print(f"A:\n{A}\n")
print(f"b:\n{b}\n")
# --- Decomposizione della matrice A in LU --- #
print("CHOLESKY FACTORIZATION ...")
cholesky_execution_time, L = get_execution_time(Cholesky_factorization.compute, [A, method, jit])
if L is None:
print("Impossibile scomporre la matrice data !!", force=True)
return -1
print(f"L:\n{L}\n")
print(f"Il risultato è corretto ?: {'✅' if (Cholesky_factorization.is_correct_solution(A, L)) else '❌'}")
print(f"Tempo di esecuzione: {cholesky_execution_time}")
print('\n')
# --- Risoluzione del Sistema Lineare --- #
print("SOLVING LINEAR SYSTEM ...")
linsys_execution_time, x = get_execution_time(Linear_sistem.solve, [L, None, b])
print(f"x: \n{x}\n")
print(f"Il risultato è corretto ?: {'✅' if (Linear_sistem.is_correct_solution(A, x, b)) else '❌'}")
print(f"Tempo di esecuzione: {linsys_execution_time}")
return (x, (cholesky_execution_time, linsys_execution_time))
def gauss():
Ab = np.c_[A, b] # Augmented Matrix
# --- Visualizzo i dati iniziali --- #
print(f"A:\n{A}\n")
print(f"b:\n{b}\n")
print(f"Ab:\n{Ab}\n")
# --- Applicazione dell'algoritmo di eliminaizone di Gauss --- #
print("GAUSSIAN ELIMINATION ...")
gauss_execution_time, U = get_execution_time(Gaussian_elimination.compute, [Ab])
if U is None:
print("Impossibile applicare l'algoritmo di Gauss sualla matrice data !!")
return -1
print(f"U:\n{U}\n")
print(f"Il risultato è corretto ?: {'✅' if (Gaussian_elimination.is_correct_solution(A, U, b)) else '❌'}")
print(f"Tempo di esecuzione: {gauss_execution_time}")
print('\n')
# --- Risoluzione del Sistema Lineare --- #
print("SOLVING LINEAR SYSTEM ...")
linsys_execution_time, x = get_execution_time(Linear_sistem.solve, [None, U, None])
print(f"x: \n{x}\n")
print(f"Il risultato è corretto ?: {'✅' if (Linear_sistem.is_correct_solution(A, x, b)) else '❌'}")
print(f"Tempo di esecuzione: {linsys_execution_time}")
return (x, (gauss_execution_time, linsys_execution_time))
A, b = generate_data(size=size, seed=seed)
match ALGORITHM:
case "cholesky":
return cholesky()
case "gauss":
return gauss()
case _:
raise Exception("Bad Algorithm Name !")
def find_limit(starting_size=100, seed=20, method="column", jit=False):
size = starting_size
while True:
print(f"SIZE: {size}x{size}")
A, b = generate_data(size, seed)
execution_time, _ = get_execution_time(Cholesky_factorization.compute, [A, method, jit])
print(f"Cholesky Execution Time: {execution_time} ms")
print("\n")
size *= 2
def benchmark(size=10_000, seed=20, method="column", jit=False) -> Tuple[int, Any]: # TODO: controllare cosa ritornare
print("Generating data ...")
A, b = generate_data(size, seed)
print()
match ALGORITHM:
case "cholesky":
print(f"ALGORITHM:\t Cholesky (by {method})")
print(f"MATRIX SIZE:\t {size}x{size}")
print(f"SEED:\t\t {seed}")
print(f"JIT:\t\t {jit}")
print("")
execution_time, L = get_execution_time(Cholesky_factorization.compute, [A, method, jit, True])
print(f"Execution Time: {execution_time}")
data = {
#'A': A.tolist(),
#'b': b.tolist(),
#'res': L.tolist(),
'time': execution_time,
'algorithm': ALGORITHM,
'size': size, 'seed': seed,
'method': method,
'jit': jit
}
__save(data)
case "gauss":
print(f"ALGORITHM:\t Gauss")
print(f"MATRIX SIZE:\t {size}")
print(f"SEED:\t\t {seed}")
print("")
Ab = np.c_[A, b] # Augmented Matrix
execution_time, U = get_execution_time(Gaussian_elimination.compute, [Ab])
print(f"Execution Time: {execution_time}")
data = {
#'A': A.tolist(),
#'b': b.tolist(),
#'res': U.tolist(),
'time': execution_time,
'algorithm': ALGORITHM,
'size': size, 'seed': seed,
'method': None,
'jit': None,
}
__save(data)
case _:
raise Exception("Bad Algorithm Name !")
def set_algorithm(string: str):
'''
Cambia l'algoritmo da utilizzare
Cholesky/Gauss
'''
global ALGORITHM
ALGORITHM = string
def __save(data: Dict):
logger.info("Saving Data")
with open(f"{data['algorithm']}_{data['method']}_{data['size']}_{data['seed']}.json", "w") as f:
jsonobj = json.dumps(data)
f.write(jsonobj)