-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
352 lines (323 loc) · 14.6 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import pickle
from pathlib import Path
import fire
import shutil
import numpy as np
import os
import paddle
import time
from configs import cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file
from data.preprocess import merge_second_batch
import core
import models
import libs
from libs.tools.progress_bar import ProgressBar
import data.kitti_common as kitti
from libs.tools.eval import get_official_eval_result, get_coco_eval_result
import traceback
# from pyinstrument import Profiler
def eval(cfg_file = None,
model_dir = None,
result_path=None,
create_folder=False,
display_step=1,
summary_step=5,
pickle_result=False):
model_dir = Path(model_dir)
model_dir.mkdir(parents=True, exist_ok=True)
eval_checkpoint_dir = model_dir / 'eval_checkpoints'
eval_checkpoint_dir.mkdir(parents=True, exist_ok=True)
if result_path is None:
result_path = model_dir / 'results'
config_file_bkp = "pipeline.config"
shutil.copyfile(cfg_file, str(model_dir / config_file_bkp))
config = cfg_from_yaml_file(cfg_file, cfg)
input_cfg = config.TRAIN_INPUT_READER
eval_input_cfg = config.EVAL_INPUT_READER
model_cfg = config.MODEL
train_cfg = config.TRAIN_CONFIG
class_names = config.CLASS_NAMES
######################
# BUILD VOXEL GENERATOR
######################
voxel_generator = core.build_voxel_generator(config.VOXEL_GENERATOR)
######################
# BUILD TARGET ASSIGNER
######################
bv_range = voxel_generator.point_cloud_range[[0, 1, 3, 4]]
box_coder = core.build_box_coder(config.BOX_CODER)
target_assigner_cfg = config.TARGET_ASSIGNER
target_assigner = core.build_target_assigner(target_assigner_cfg,
bv_range, box_coder)
######################
# BUILD NET
######################
net = models.build_network(model_cfg, voxel_generator, target_assigner)
######################
# RESUME
######################
# we need global_step to create lr_scheduler, so restore net first.
# libs.tools.try_restore_latest_checkpoints(eval_checkpoint_dir, [net])
if os.path.exists(eval_checkpoint_dir):
resume_model = os.path.normpath(eval_checkpoint_dir)
ckpt_path = os.path.join(eval_checkpoint_dir, 'voxelnet.pdparams')
para_state_dict = paddle.load(ckpt_path)
net.set_state_dict(para_state_dict)
print("++++++++++++++++++++++++++++++++LOAD voxelnet.pdparams SUCCESS!!!!!+++++++++++++++++++++++++++++")
if train_cfg.ENABLE_MIXED_PRECISION:
net.half()
net.metrics_to_float()
net.convert_norm_to_float(net)
# lr_scheduler = core.build_lr_schedules(optimizer_cfg, optimizer, gstep)
if train_cfg.ENABLE_MIXED_PRECISION:
float_dtype = paddle.float16
else:
float_dtype = paddle.float32
######################
# PREPARE INPUT
######################
eval_dataset = core.build_input_reader(input_cfg,
model_cfg,
training= False,
voxel_generator=voxel_generator,
target_assigner=target_assigner)
def _worker_init_fn(worker_id):
time_seed = np.array(time.time(),dtype=np.int32)
np.random.seed(time_seed + worker_id)
print(f"WORKER {worker_id} seed:", np.random.get_state()[1][0])
# print("++++++++++++++++++++++++++++++++++++START LOADER++++++++++++++++++++++++++++++++++++++++++++++++")
eval_dataloader = paddle.io.DataLoader(
dataset=eval_dataset,
batch_size = eval_input_cfg.BATCH_SIZE,
shuffle=False,
use_shared_memory=False,
num_workers=eval_input_cfg.NUM_WORKERS,
collate_fn=merge_second_batch)
######################
# EVAL
######################
log_path = model_dir / 'eval_log.txt'
logf = open(log_path, 'a')
logf.write("\n")
print("++++++++++++++++++++++++++++++++++++EVAL PREPARE++++++++++++++++++++++++++++++++++++++++++++++++")
try:
print("++++++++++++++++++++++++++++++++++++START EVAL++++++++++++++++++++++++++++++++++++++++++++++++", file=logf)
net.eval()
center_limit_range = model_cfg.POST_PROCESSING.post_center_limit_range
result_path_step = result_path / f"eval"
result_path_step.mkdir(parents=True, exist_ok=True)
# print("++++++++++++++++++++++++++++++++++++OVER EVAL++++++++++++++++++++++++++++++++++++++++++++++++")
t = time.time()
dt_annos = []
print("**********************************************************************************")
prog_bar = ProgressBar()
print("**********************************************************************************")
prog_bar.start(len(eval_dataset) // eval_input_cfg.BATCH_SIZE + 1)
print("**********************************************************************************")
for i,example in enumerate(eval_dataloader()):
# profiler = Profiler()
# profiler.start()
example = example_convert_to_paddle(example, float_dtype)
if pickle_result:
dt_annos += predict_kitti_to_anno(
net, example, class_names, center_limit_range,
model_cfg.LIDAR_INPUT)
else:
try:
_predict_kitti_to_file(net, example, result_path_step,
class_names, center_limit_range,
model_cfg.LIDAR_INPUT)
except Exception as e:
traceback.print_exc()
prog_bar.print_bar()
# profiler.stop()
# print(profiler.output_text(unicode=True, color=True))
sec_per_ex = len(eval_dataset) / (time.time() - t)
# print(f"avg forward time per example: {net.avg_forward_time:.3f}")
# print(f"avg postprocess time per example: {net.avg_postprocess_time:.3f}")
print(f'generate label finished({sec_per_ex:.2f}/s). start eval:')
print(f'generate label finished({sec_per_ex:.2f}/s). start eval:', file=logf)
gt_annos = [info["annos"] for info in eval_dataset.dataset.kitti_infos]
print(gt_annos)
if not pickle_result:
dt_annos = kitti.get_label_annos(result_path_step)
result, mAPbbox, mAPbev, mAP3d, mAPaos = get_official_eval_result(gt_annos, dt_annos, class_names,
return_data=True)
print(result, file=logf)
print(result)
print("**********************************************************************************")
result = get_coco_eval_result(gt_annos, dt_annos, class_names)
print(result, file=logf)
print(result)
except Exception as e:
traceback.print_exc()
def example_convert_to_paddle(example, dtype=paddle.float32) -> dict:
example_paddle = {}
float_names = [
"voxels", "anchors", "reg_targets", "reg_weights", "bev_map", "rect",
"Trv2c", "P2"
]
for k, v in example.items():
if k in float_names:
example_paddle[k] = paddle.to_tensor(v, dtype=dtype)
elif k in ["coordinates", "labels", "num_points"]:
example_paddle[k] = paddle.to_tensor(
v, dtype=paddle.int32)
elif k in ["anchors_mask"]:
example_paddle[k] = paddle.to_tensor(
v, dtype=paddle.bool)
else:
example_paddle[k] = v
return example_paddle
def _flat_nested_json_dict(json_dict, flatted, sep=".", start=""):
for k, v in json_dict.items():
if isinstance(v, dict):
_flat_nested_json_dict(v, flatted, sep, start + sep + k)
else:
flatted[start + sep + k] = v
def flat_nested_json_dict(json_dict, sep=".") -> dict:
"""flat a nested json-like dict. this function make shadow copy.
"""
flatted = {}
for k, v in json_dict.items():
if isinstance(v, dict):
_flat_nested_json_dict(v, flatted, sep, k)
else:
flatted[k] = v
return flatted
def _predict_kitti_to_file(net,
example,
result_save_path,
class_names,
center_limit_range=None,
lidar_input=False):
batch_image_shape = example['image_shape']
batch_imgidx = example['image_idx']
predictions_dicts = net(example)
# t = time.time()
for i, preds_dict in enumerate(predictions_dicts):
image_shape = batch_image_shape[i].cpu().numpy()
img_idx = preds_dict["image_idx"]
if preds_dict["bbox"] is not None:
box_2d_preds = preds_dict["bbox"].cpu().numpy()
# print(box_2d_preds)
box_preds = preds_dict["box3d_camera"].cpu().numpy()
scores = preds_dict["scores"].cpu().numpy()
box_preds_lidar = preds_dict["box3d_lidar"]
if(len(box_preds_lidar.shape)==1):
box_preds_lidar = box_preds_lidar.unsqueeze(0)
box_preds_lidar = box_preds_lidar.cpu().numpy()
# write pred to file
box_preds = box_preds[:, [0, 1, 2, 4, 5, 3,
6]] # lhw->hwl(label file format)
label_preds = preds_dict["label_preds"].cpu().numpy()
# label_preds = np.zeros([box_2d_preds.shape[0]], dtype=np.int32)
result_lines = []
for box, box_lidar, bbox, score, label in zip(
box_preds, box_preds_lidar, box_2d_preds, scores,
label_preds):
if not lidar_input:
if bbox[0] > image_shape[1] or bbox[1] > image_shape[0]:
continue
if bbox[2] < 0 or bbox[3] < 0:
continue
# print(img_shape)
if center_limit_range is not None:
limit_range = np.array(center_limit_range)
if (np.any(box_lidar[:3] < limit_range[:3])
or np.any(box_lidar[:3] > limit_range[3:])):
continue
bbox[2:] = np.minimum(bbox[2:], image_shape[::-1])# TODO
bbox[:2] = np.maximum(bbox[:2], [0, 0])
result_dict = {
'name': class_names[int(label)],
'alpha': -np.arctan2(-box_lidar[1], box_lidar[0]) + box[6],
'bbox': bbox,
'location': box[:3],
'dimensions': box[3:6],
'rotation_y': box[6],
'score': score,
}
result_line = kitti.kitti_result_line(result_dict)
result_lines.append(result_line)
else:
result_lines = []
result_file = f"{result_save_path}/{img_idx.numpy()[0]:06d}.txt"
result_str = '\n'.join(result_lines)
with open(result_file, 'w') as f:
f.write(result_str)
def predict_kitti_to_anno(net,
example,
class_names,
center_limit_range=None,
lidar_input=False,
global_set=None):
batch_image_shape = example['image_shape']
batch_imgidx = example['image_idx']
predictions_dicts = net(example)
# t = time.time()
annos = []
for i, preds_dict in enumerate(predictions_dicts):
image_shape = batch_image_shape[i].cpu().numpy()
img_idx = preds_dict["image_idx"]
if preds_dict["bbox"] is not None:
box_2d_preds = preds_dict["bbox"].detach().cpu().numpy()
box_preds = preds_dict["box3d_camera"].detach().cpu().numpy()
scores = preds_dict["scores"].detach().cpu().numpy()
box_preds_lidar = preds_dict["box3d_lidar"]
if(len(box_preds_lidar.shape)==1):
box_preds_lidar = box_preds_lidar.unsqueeze(0)
box_preds_lidar = box_preds_lidar.cpu().numpy()
# write pred to file
label_preds = preds_dict["label_preds"].detach().cpu().numpy()
# label_preds = np.zeros([box_2d_preds.shape[0]], dtype=np.int32)
anno = kitti.get_start_result_anno()
num_example = 0
for box, box_lidar, bbox, score, label in zip(
box_preds, box_preds_lidar, box_2d_preds, scores,
label_preds):
if not lidar_input:
if bbox[0] > image_shape[1] or bbox[1] > image_shape[0]:
continue
if bbox[2] < 0 or bbox[3] < 0:
continue
# print(img_shape)
if center_limit_range is not None:
limit_range = np.array(center_limit_range)
if (np.any(box_lidar[:3] < limit_range[:3])
or np.any(box_lidar[:3] > limit_range[3:])):
continue
bbox[2:] = np.minimum(bbox[2:], image_shape[::-1])
bbox[:2] = np.maximum(bbox[:2], [0, 0])
anno["name"].append(class_names[int(label)])
anno["truncated"].append(0.0)
anno["occluded"].append(0)
anno["alpha"].append(-np.arctan2(-box_lidar[1], box_lidar[0]) +
box[6])
anno["bbox"].append(bbox)
anno["dimensions"].append(box[3:6])
anno["location"].append(box[:3])
anno["rotation_y"].append(box[6])
if global_set is not None:
for i in range(100000):
if score in global_set:
score -= 1 / 100000
else:
global_set.add(score)
break
anno["score"].append(score)
num_example += 1
if num_example != 0:
anno = {n: np.stack(v) for n, v in anno.items()}
annos.append(anno)
else:
annos.append(kitti.empty_result_anno())
else:
annos.append(kitti.empty_result_anno())
num_example = annos[-1]["name"].shape[0]
annos[-1]["image_idx"] = np.array(
[img_idx] * num_example, dtype=np.int64)
return annos
if __name__ == '__main__':
fire.Fire()
# python eval.py eval --cfg_file=configs/voxelnet_kitti_car.yaml --model_dir=./output