-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_fix_oom.py
742 lines (657 loc) · 33.4 KB
/
train_fix_oom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
# python train_fix_oom.py --config=configs/voxelnet_kitti_car.yaml --model_dir=./output --use_vdl=True # 单
# python -m paddle.distributed.launch train_mgpu.py --config=configs/voxelnet_kitti_car.yaml --model_dir=./output --use_vdl=True # 多卡 May error
import os
import time
import copy
import pickle
import random
import shutil
import psutil
import argparse
import traceback
import numpy as np
from pathlib import Path
import libs
from libs.tools.progress_bar import ProgressBar
from libs.tools.eval import get_official_eval_result, get_coco_eval_result
from configs import cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file
import core
import models
import data.kitti_common as kitti
from data.preprocess import merge_second_batch
from utils import get_sys_env
from utils import logger
import paddle
from visualdl import LogWriter
# from memory_profiler import profile # for debug
def worker_init_fn(worker_id):
np.random.seed(random.randint(0, 100000))
def getMemCpu(total_mem=14): # 最大可用内存28G左右
mem = psutil.Process(os.getpid()).memory_info().rss / 1024 / 1024 / 1024
return mem/total_mem
def train(cfg_file=None,
model_dir=None,
result_path=None,
use_vdl=True,
create_folder=False,
display_step=20,
summary_step=5,
pickle_result=False):
global flag #全局falg用于持续训练直到完成
global resume
global remain_i
global remain_loop
break_flag = False
t_loop = copy.copy(remain_loop)
t_i = copy.copy(remain_i)
nranks = paddle.distributed.ParallelEnv().nranks
local_rank = paddle.distributed.ParallelEnv().local_rank
model_dir = Path(model_dir)
model_dir.mkdir(parents=True, exist_ok=True)
eval_checkpoint_dir = model_dir / 'eval_checkpoints'
eval_checkpoint_dir.mkdir(parents=True, exist_ok=True)
if result_path is None:
result_path = model_dir / 'results'
config_file_bkp = "pipeline.config"
shutil.copyfile(cfg_file, str(model_dir / config_file_bkp))
config = cfg_from_yaml_file(cfg_file, cfg)
input_cfg = config.TRAIN_INPUT_READER
eval_input_cfg = config.EVAL_INPUT_READER
model_cfg = config.MODEL
train_cfg = config.TRAIN_CONFIG
class_names = config.CLASS_NAMES
######################
# BUILD VOXEL GENERATOR
######################
voxel_generator = core.build_voxel_generator(config.VOXEL_GENERATOR)
######################
# BUILD TARGET ASSIGNER
######################
bv_range = voxel_generator.point_cloud_range[[0, 1, 3, 4]]
box_coder = core.build_box_coder(config.BOX_CODER)
target_assigner_cfg = config.TARGET_ASSIGNER
target_assigner = core.build_target_assigner(target_assigner_cfg,
bv_range, box_coder)
######################
# BUILD NET
######################
net = models.build_network(model_cfg, voxel_generator, target_assigner)
print("num_trainable parameters:", len(list(net.parameters())))
######################
# BUILD OPTIMIZER
######################
# we need global_step to create lr_scheduler, so restore net first.
# libs.tools.try_restore_latest_checkpoints(model_dir, [net])
gstep = net.get_global_step() - 1
optimizer_cfg = train_cfg.OPTIMIZER
if train_cfg.ENABLE_MIXED_PRECISION:
net.half()
net.metrics_to_float()
net.convert_norm_to_float(net)
optimizer = core.build_optimizer(optimizer_cfg, net.parameters())
if train_cfg.ENABLE_MIXED_PRECISION:
loss_scale = train_cfg.LOSS_SCALE_FACTOR
mixed_optimizer = libs.tools.MixedPrecisionWrapper(
optimizer, loss_scale)
else:
mixed_optimizer = optimizer
# must restore optimizer AFTER using MixedPrecisionWrapper
# libs.tools.try_restore_latest_checkpoints(model_dir,
# [mixed_optimizer])
#################
# RESUME
#################
if resume:
if os.path.exists(model_dir):
resume_model = os.path.normpath(model_dir)
ckpt_path = os.path.join(model_dir, 'voxelnet.pdparams')
para_state_dict = paddle.load(ckpt_path)
net.set_state_dict(para_state_dict)
ckpt_path = os.path.join(resume_model, 'voxelnet.pdopt')
opti_state_dict = paddle.load(ckpt_path)
mixed_optimizer.set_state_dict(opti_state_dict)
# print("++++++++++++++++++++++++++++++++LOAD voxelnet.pdparams SUCCESS!!!!!+++++++++++++++++++++++++++++")
# print("++++++++++++++++++++++++++++++++LOAD voxelnet.pdopt SUCCESS!!!!!+++++++++++++++++++++++++++++")
else:
raise ValueError(
'Directory of the model needed to resume is not Found: {}'.format(model_dir))
if nranks > 1:
paddle.distributed.fleet.init(is_collective=True)
mixed_optimizer = paddle.distributed.fleet.distributed_optimizer(
mixed_optimizer) # The return is Fleet object
ddp_net = paddle.distributed.fleet.distributed_model(net)
if train_cfg.ENABLE_MIXED_PRECISION:
float_dtype = paddle.float16
else:
float_dtype = paddle.float32
######################
# PREPARE INPUT
######################
dataset = core.build_input_reader(input_cfg,
model_cfg,
training=True,
voxel_generator=voxel_generator,
target_assigner=target_assigner)
eval_dataset = core.build_input_reader(input_cfg,
model_cfg,
training=False,
voxel_generator=voxel_generator,
target_assigner=target_assigner)
batch_sampler = paddle.io.DistributedBatchSampler(dataset, batch_size=input_cfg.BATCH_SIZE, shuffle=True,
drop_last=True)
dataloader = paddle.io.DataLoader(
dataset=dataset,
batch_sampler=batch_sampler,
use_shared_memory=False,
num_workers=input_cfg.NUM_WORKERS,
collate_fn=merge_second_batch,
worker_init_fn=worker_init_fn
)
eval_batch_sampler = paddle.io.DistributedBatchSampler(eval_dataset, batch_size=eval_input_cfg.BATCH_SIZE,
shuffle=False, drop_last=False)
eval_dataloader = paddle.io.DataLoader(
dataset=eval_dataset,
batch_sampler=eval_batch_sampler,
use_shared_memory=False,
num_workers=eval_input_cfg.NUM_WORKERS,
collate_fn=merge_second_batch,
worker_init_fn=worker_init_fn
)
######################
# TRAINING
######################
log_path = model_dir / 'log.txt'
logf = open(log_path, 'a')
# logf.write(proto_str)
logf.write("\n")
if use_vdl:
log_writer = LogWriter(os.path.normpath(model_dir))
remain_steps = train_cfg.STEPS - net.get_global_step()
pre_loop = net.get_global_step() // train_cfg.STEPS_PER_EPOCH + 1
remain_loop = remain_steps // train_cfg.STEPS_PER_EPOCH + 1
pd_start_time = time.time()
clear_metrics_every_epoch = train_cfg.CLEAR_METRICS_EVERY_EPOCH
print("++++++++++++++++++++++++++++++++++++TRAIN PREPARE++++++++++++++++++++++++++++++++++++++++++++++++")
try:
print("++++++++++++++++++++++++++++++++++++START TRAIN++++++++++++++++++++++++++++++++++++++++++++++++")
for _ in range(remain_loop+t_loop): # total_loop todo adjust
if _ >= t_loop:
if clear_metrics_every_epoch:
net.clear_metrics()
for i, example in enumerate(dataloader()):
if i >= t_i:
memory_per = getMemCpu() # TODO get memoryc ratio
if memory_per > 0.9: # 内存占用大于百分90时break
resume = True
break_flag = True
# TODO save model\optim\iter of dataloader\
print(
"++++++++++++++++++++++++++++++++++++start memory_per break save++++++++++++++++++++++++++++++++++++++++++++++++")
paddle.save(net.state_dict(), os.path.join(model_dir, "voxelnet.pdparams"))
paddle.save(mixed_optimizer.state_dict(), os.path.join(model_dir, "voxelnet.pdopt"))
# Ensure that all evaluation points are saved forever
paddle.save(net.state_dict(), os.path.join(eval_checkpoint_dir, "voxelnet.pdparams"))
paddle.save(mixed_optimizer.state_dict(),
os.path.join(eval_checkpoint_dir, "voxelnet.pdopt"))
print(
"++++++++++++++++++++++++++++++++++++over memory_per break save++++++++++++++++++++++++++++++++++++++++++++++++")
break
print(
"++++++++++++++++++++++++++++++++++++START LOOP:{}-STEP:{}++++++++++++++++++++++++++++++++++++++++++++++++".format(
_ + pre_loop, i))
st = time.time()
example = example_convert_to_paddle(example, float_dtype)
batch_size = example["anchors"].shape[0]
if nranks > 1:
ret_dict = ddp_net(example)
else:
ret_dict = net(example)
# box_preds = ret_dict["box_preds"]
cls_preds = ret_dict["cls_preds"]
loss = ret_dict["loss"].mean()
cls_loss_reduced = ret_dict["cls_loss_reduced"].mean()
loc_loss_reduced = ret_dict["loc_loss_reduced"].mean()
cls_pos_loss = ret_dict["cls_pos_loss"]
cls_neg_loss = ret_dict["cls_neg_loss"]
loc_loss = ret_dict["loc_loss"]
cls_loss = ret_dict["cls_loss"]
dir_loss_reduced = ret_dict["dir_loss_reduced"]
cared = ret_dict["cared"]
labels = example["labels"]
if train_cfg.ENABLE_MIXED_PRECISION:
loss *= loss_scale
if (train_cfg.ENABLE_ACCUMULATION_GRAD): # 是否使用梯度累积
loss = loss / train_cfg.ACCUMULATION_STEPS # loss每次都会更新,因此每次都除以steps再加到原来的梯度上面去
loss.backward()
if (train_cfg.ENABLE_ACCUMULATION_GRAD): # 是否使用梯度累积
if ((i + 1) % train_cfg.ACCUMULATION_STEPS) == 0:
mixed_optimizer.step()
# update lr
if isinstance(mixed_optimizer, paddle.distributed.fleet.Fleet):
lr_sche = mixed_optimizer.user_defined_optimizer._learning_rate
else:
lr_sche = mixed_optimizer._learning_rate
if isinstance(lr_sche, paddle.optimizer.lr.LRScheduler):
lr_sche.step()
# net.clear_gradients()
mixed_optimizer.clear_grad()
else:
mixed_optimizer.step()
# update lr
if isinstance(mixed_optimizer, paddle.distributed.fleet.Fleet):
lr_sche = mixed_optimizer.user_defined_optimizer._learning_rate
else:
lr_sche = mixed_optimizer._learning_rate
if isinstance(lr_sche, paddle.optimizer.lr.LRScheduler):
lr_sche.step()
# net.clear_gradients()
mixed_optimizer.clear_grad()
# print("++++++++++++++++++++++++++++++++++++OVER UPDATE++++++++++++++++++++++++++++++++++++++++++++++++")
net.update_global_step()
# print("++++++++++++++++++++++++++++++++++++STAR UPDATE_METRICS++++++++++++++++++++++++++++++++++++++++++++++++")
net_metrics = net.update_metrics(
cls_loss_reduced.detach(),
loc_loss_reduced.detach(),
cls_preds,
labels, cared)
# print("++++++++++++++++++++++++++++++++++++OVER UPDATE_METRICS++++++++++++++++++++++++++++++++++++++++++++++++")
step_time = (time.time() - st)
metrics = {}
num_pos = int((labels > 0).astype("float32")[0].sum().cpu().numpy())
num_neg = int((labels == 0).astype("float32")[0].sum().cpu().numpy())
if 'anchors_mask' not in example:
num_anchors = example['anchors'].shape[1]
else:
num_anchors = int(example['anchors_mask'].astype("float32")[0].sum().numpy())
global_step = net.get_global_step()
if global_step % display_step == 0:
loc_loss_elem = [
float(loc_loss[:, :, i].sum().detach().cpu().numpy() /
batch_size) for i in range(loc_loss.shape[-1])
]
metrics['time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
metrics["epoch"] = _ + pre_loop
metrics["step"] = global_step
metrics["steptime"] = step_time
# print("++++++++++++++++++++++++++++++++++++START METRICS_UPDATE++++++++++++++++++++++++++++++++++++++++++++++++")
metrics.update(net_metrics)
# print("++++++++++++++++++++++++++++++++++++OVER METRICS_UPDATE++++++++++++++++++++++++++++++++++++++++++++++++")
metrics["loss"] = {}
metrics["loss"]["loc_elem"] = loc_loss_elem
metrics["loss"]["cls_pos_rt"] = float(cls_pos_loss.detach().cpu().numpy())
metrics["loss"]["cls_neg_rt"] = float(cls_neg_loss.detach().cpu().numpy())
if model_cfg.BACKBONE.use_direction_classifier:
metrics["loss"]["dir_rt"] = float(dir_loss_reduced.detach().cpu().numpy())
metrics["num_vox"] = int(example["voxels"].shape[0])
metrics["num_pos"] = int(num_pos)
metrics["num_neg"] = int(num_neg)
metrics["num_anchors"] = int(num_anchors)
metrics["lr"] = float(mixed_optimizer.get_lr())
metrics["image_idx"] = example['image_idx'][0]
flatted_metrics = flat_nested_json_dict(metrics)
flatted_summarys = flat_nested_json_dict(metrics, "/")
metrics_str_list = []
for k, v in flatted_metrics.items():
if isinstance(v, float):
metrics_str_list.append(f"{k}={v:.3}")
elif isinstance(v, (list, tuple)):
if v and isinstance(v[0], float):
v_str = ', '.join([f"{e:.3}" for e in v])
metrics_str_list.append(f"{k}=[{v_str}]")
else:
metrics_str_list.append(f"{k}={v}")
else:
metrics_str_list.append(f"{k}={v}")
log_str = ', '.join(metrics_str_list)
print(
"++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
print(
"++++++++++++++++++++++++++++++++++++STAR EVAL++++++++++++++++++++++++++++++++++++++++++++++++",
file=logf)
print(log_str)
print(log_str, file=logf)
if use_vdl:
log_writer.add_scalar('Train/loss', float(loss.detach().cpu().numpy()), metrics["step"])
log_writer.add_scalar('Train/cls_loss', metrics["cls_loss"], metrics["step"])
log_writer.add_scalar('Train/loc_loss', metrics["loc_loss"], metrics["step"])
log_writer.add_scalar('Train/lr', metrics["lr"], metrics["step"])
log_writer.add_scalar('Train/steptime', metrics["steptime"], metrics["step"])
remain_i += 1
pd_elasped_time = time.time() - pd_start_time
if pd_elasped_time > train_cfg.SAVE_CHECKPOINTS_SECS:
paddle.save(net.state_dict(), os.path.join(model_dir, "voxelnet.pdparams"))
paddle.save(mixed_optimizer.state_dict(), os.path.join(model_dir, "voxelnet.pdopt"))
pd_start_time = time.time()
print("++++++++++++++++++++++++++++++++++++START SAVE++++++++++++++++++++++++++++++++++++++++++++++++")
paddle.save(net.state_dict(), os.path.join(model_dir, "voxelnet.pdparams"))
paddle.save(mixed_optimizer.state_dict(), os.path.join(model_dir, "voxelnet.pdopt"))
# Ensure that all evaluation points are saved forever
paddle.save(net.state_dict(), os.path.join(eval_checkpoint_dir, "voxelnet.pdparams"))
paddle.save(mixed_optimizer.state_dict(), os.path.join(eval_checkpoint_dir, "voxelnet.pdopt"))
print("++++++++++++++++++++++++++++++++++++OVER SAVE++++++++++++++++++++++++++++++++++++++++++++++++")
if ((_ + pre_loop + 1) % train_cfg.EPOCHS_PER_EVAL == 0 or _ == remain_loop - 1):
net.eval()
center_limit_range = model_cfg.POST_PROCESSING.post_center_limit_range
result_path_step = result_path / f"loop_{_}_step_{net.get_global_step()}"
result_path_step.mkdir(parents=True, exist_ok=True)
# print("++++++++++++++++++++++++++++++++++++OVER EVAL++++++++++++++++++++++++++++++++++++++++++++++++")
t = time.time()
dt_annos = []
print("************************************START EVAL************************************")
prog_bar = ProgressBar()
print("**********************************************************************************")
prog_bar.start(len(eval_dataset) // eval_input_cfg.BATCH_SIZE + 1)
print("**********************************************************************************")
for example in eval_dataloader():
example = example_convert_to_paddle(example, float_dtype)
if pickle_result:
dt_annos += predict_kitti_to_anno(
net, example, class_names, center_limit_range,
model_cfg.LIDAR_INPUT)
else:
try:
_predict_kitti_to_file(net, example, result_path_step,
class_names, center_limit_range,
model_cfg.LIDAR_INPUT)
except Exception as e:
traceback.print_exc()
prog_bar.print_bar()
sec_per_ex = len(eval_dataset) / (time.time() - t)
print("***************************************1*******************************************")
print(f"avg forward time per example: {net.avg_forward_time:.3f}", file=logf)
print(f"avg postprocess time per example: {net.avg_postprocess_time:.3f}", file=logf)
print(f'generate label finished({sec_per_ex:.2f}/s). start eval:', file=logf)
gt_annos = [info["annos"] for info in eval_dataset.dataset.kitti_infos]
print("***************************************2*******************************************")
if not pickle_result:
dt_annos = kitti.get_label_annos(result_path_step)
result, mAPbbox, mAPbev, mAP3d, mAPaos = get_official_eval_result(gt_annos, dt_annos, class_names,
return_data=True)
print("***********************************3***********************************************")
print(result, file=logf)
print(result)
else:
result, mAPbbox, mAPbev, mAP3d, mAPaos = get_official_eval_result(gt_annos, dt_annos, class_names,
return_data=True)
print("***********************************3***********************************************")
print(result, file=logf)
print(result)
print("**************************************4********************************************")
result = get_coco_eval_result(gt_annos, dt_annos, class_names)
print(result, file=logf)
print(result)
print("++++++++++++++++++++++++++++++++++++OVER EVAL++++++++++++++++++++++++++++++++++++++++++++++++")
net.train()
if (break_flag):
break
else:
t_i = 0
remain_i = 0
remain_loop += 1
# if train success
if (break_flag):
return False
time.sleep(0.5)
if use_vdl:
log_writer.close()
return True
except Exception as e:
paddle.save(net.state_dict(), os.path.join(model_dir, "voxelnet.pdparams"))
paddle.save(mixed_optimizer.state_dict(), os.path.join(model_dir, "voxelnet.pdopt"))
traceback.print_exc() # 跟踪错误
def example_convert_to_paddle(example, dtype=paddle.float32) -> dict:
example_paddle = {}
float_names = [
"voxels", "anchors", "reg_targets", "reg_weights", "bev_map", "rect",
"Trv2c", "P2"
]
for k, v in example.items():
if k in float_names:
example_paddle[k] = paddle.to_tensor(v, dtype=dtype)
elif k in ["coordinates", "labels", "num_points"]:
example_paddle[k] = paddle.to_tensor(
v, dtype=paddle.int32)
elif k in ["anchors_mask"]:
example_paddle[k] = paddle.to_tensor(
v, dtype=paddle.bool)
else:
example_paddle[k] = v
return example_paddle
def _flat_nested_json_dict(json_dict, flatted, sep=".", start=""):
for k, v in json_dict.items():
if isinstance(v, dict):
_flat_nested_json_dict(v, flatted, sep, start + sep + k)
else:
flatted[start + sep + k] = v
def flat_nested_json_dict(json_dict, sep=".") -> dict:
"""flat a nested json-like dict. this function make shadow copy.
"""
flatted = {}
for k, v in json_dict.items():
if isinstance(v, dict):
_flat_nested_json_dict(v, flatted, sep, k)
else:
flatted[k] = v
return flatted
def _predict_kitti_to_file(net,
example,
result_save_path,
class_names,
center_limit_range=None,
lidar_input=False):
batch_image_shape = example['image_shape']
batch_imgidx = example['image_idx']
predictions_dicts = net(example)
# t = time.time()
for i, preds_dict in enumerate(predictions_dicts):
image_shape = batch_image_shape[i].cpu().numpy()
img_idx = preds_dict["image_idx"]
if preds_dict["bbox"] is not None:
box_2d_preds = preds_dict["bbox"].cpu().numpy()
# print(box_2d_preds)
box_preds = preds_dict["box3d_camera"].cpu().numpy()
scores = preds_dict["scores"].cpu().numpy()
box_preds_lidar = preds_dict["box3d_lidar"]
if (len(box_preds_lidar.shape) == 1):
box_preds_lidar = box_preds_lidar.unsqueeze(0)
box_preds_lidar = box_preds_lidar.cpu().numpy()
# write pred to file
box_preds = box_preds[:, [0, 1, 2, 4, 5, 3,
6]] # lhw->hwl(label file format)
label_preds = preds_dict["label_preds"].cpu().numpy()
# label_preds = np.zeros([box_2d_preds.shape[0]], dtype=np.int32)
result_lines = []
for box, box_lidar, bbox, score, label in zip(
box_preds, box_preds_lidar, box_2d_preds, scores,
label_preds):
if not lidar_input:
if bbox[0] > image_shape[1] or bbox[1] > image_shape[0]:
continue
if bbox[2] < 0 or bbox[3] < 0:
continue
# print(img_shape)
if center_limit_range is not None:
limit_range = np.array(center_limit_range)
if (np.any(box_lidar[:3] < limit_range[:3])
or np.any(box_lidar[:3] > limit_range[3:])):
continue
bbox[2:] = np.minimum(bbox[2:], image_shape[::-1]) # TODO
bbox[:2] = np.maximum(bbox[:2], [0, 0])
result_dict = {
'name': class_names[int(label)],
'alpha': -np.arctan2(-box_lidar[1], box_lidar[0]) + box[6],
'bbox': bbox,
'location': box[:3],
'dimensions': box[3:6],
'rotation_y': box[6],
'score': score,
}
result_line = kitti.kitti_result_line(result_dict)
result_lines.append(result_line)
else:
result_lines = []
result_file = f"{result_save_path}/{img_idx.numpy()[0]:06d}.txt"
result_str = '\n'.join(result_lines)
with open(result_file, 'w') as f:
f.write(result_str)
def predict_kitti_to_anno(net,
example,
class_names,
center_limit_range=None,
lidar_input=False,
global_set=None):
batch_image_shape = example['image_shape']
batch_imgidx = example['image_idx']
predictions_dicts = net(example)
# t = time.time()
annos = []
for i, preds_dict in enumerate(predictions_dicts):
image_shape = batch_image_shape[i].cpu().numpy()
img_idx = preds_dict["image_idx"]
if preds_dict["bbox"] is not None:
box_2d_preds = preds_dict["bbox"].detach().cpu().numpy()
box_preds = preds_dict["box3d_camera"].detach().cpu().numpy()
scores = preds_dict["scores"].detach().cpu().numpy()
box_preds_lidar = preds_dict["box3d_lidar"]
if (len(box_preds_lidar.shape) == 1):
box_preds_lidar = box_preds_lidar.unsqueeze(0)
box_preds_lidar = box_preds_lidar.cpu().numpy()
# write pred to file
label_preds = preds_dict["label_preds"].detach().cpu().numpy()
# label_preds = np.zeros([box_2d_preds.shape[0]], dtype=np.int32)
anno = kitti.get_start_result_anno()
num_example = 0
for box, box_lidar, bbox, score, label in zip(
box_preds, box_preds_lidar, box_2d_preds, scores,
label_preds):
if not lidar_input:
if bbox[0] > image_shape[1] or bbox[1] > image_shape[0]:
continue
if bbox[2] < 0 or bbox[3] < 0:
continue
# print(img_shape)
if center_limit_range is not None:
limit_range = np.array(center_limit_range)
if (np.any(box_lidar[:3] < limit_range[:3])
or np.any(box_lidar[:3] > limit_range[3:])):
continue
bbox[2:] = np.minimum(bbox[2:], image_shape[::-1])
bbox[:2] = np.maximum(bbox[:2], [0, 0])
anno["name"].append(class_names[int(label)])
anno["truncated"].append(0.0)
anno["occluded"].append(0)
anno["alpha"].append(-np.arctan2(-box_lidar[1], box_lidar[0]) +
box[6])
anno["bbox"].append(bbox)
anno["dimensions"].append(box[3:6])
anno["location"].append(box[:3])
anno["rotation_y"].append(box[6])
if global_set is not None:
for i in range(100000):
if score in global_set:
score -= 1 / 100000
else:
global_set.add(score)
break
anno["score"].append(score)
num_example += 1
if num_example != 0:
anno = {n: np.stack(v) for n, v in anno.items()}
annos.append(anno)
else:
annos.append(kitti.empty_result_anno())
else:
annos.append(kitti.empty_result_anno())
num_example = annos[-1]["name"].shape[0]
annos[-1]["image_idx"] = np.array(
[img_idx] * num_example, dtype=np.int64)
return annos
def parse_args():
parser = argparse.ArgumentParser(description='Model training')
# params of training
parser.add_argument(
'--config', dest="cfg", help="The config file.", default=None, type=str)
parser.add_argument(
'--model_dir',
dest='model_dir',
help='The directory for saving the model snapshot',
type=str,
default='./output')
parser.add_argument(
'--resume',
dest='resume',
help='Whether to resume model in save_dir/',
type=bool,
default=False)
parser.add_argument(
'--use_vdl',
dest='use_vdl',
help='Whether to record the data to VisualDL during training',
type=bool,
default=True)
parser.add_argument(
'--create_folder',
dest='create_folder',
help='Whether to create_folder in save_dir/.No use now.',
type=bool,
default=False)
parser.add_argument(
'--display_step',
dest='display_step',
help='Display logging information at every log_iters',
default=10,
type=int)
parser.add_argument(
'--summary_step',
dest='summary_step',
help='do summary. No use now.',
default=5,
type=int)
parser.add_argument(
'--pickle_result',
dest='pickle_result',
help='Whther to use pickle_result for eval',
default=False,
type=bool)
return parser.parse_args()
flag = False
resume = True # 全局变量
remain_loop = 0
remain_i = 0
def main(args):
env_info = get_sys_env()
info = ['{}: {}'.format(k, v) for k, v in env_info.items()]
info = '\n'.join(['', format('Environment Information', '-^48s')] + info +
['-' * 48])
logger.info(info)
place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
'GPUs used'] else 'cpu'
paddle.set_device(place)
global flag
global resume
while(flag!=True):
if(resume):
flag = train(cfg_file=args.cfg,
model_dir=args.model_dir,
# resume=resume,
use_vdl=args.use_vdl,
create_folder=args.create_folder,
display_step=args.display_step,
summary_step=args.summary_step,
pickle_result=args.pickle_result
)
time.sleep(0.5)
else:
flag = train(cfg_file=args.cfg,
model_dir=args.model_dir,
# resume=resume,
use_vdl=args.use_vdl,
create_folder=args.create_folder,
display_step=args.display_step,
summary_step=args.summary_step,
pickle_result=args.pickle_result
)
time.sleep(0.5)
if __name__ == '__main__':
args = parse_args()
main(args)