-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathdensenetfinalinq.py
243 lines (202 loc) · 9.74 KB
/
densenetfinalinq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
import numpy as np
import tensorflow as tf
def unpickle(file):
import _pickle as cPickle
fo = open(file, 'rb')
dict = cPickle.load(fo,encoding='latin1')
fo.close()
if 'data' in dict:
dict['data'] = dict['data'].reshape((-1, 3, 32, 32)).swapaxes(1, 3).swapaxes(1, 2).reshape(-1, 32*32*3) / 256.
return dict
def load_data_one(f):
batch = unpickle(f)
data = batch['data']
labels = batch['labels']
print ("Loading %s: %d" % (f, len(data)))
return data, labels
def load_data(files, data_dir, label_count):
data, labels = load_data_one(data_dir + '/' + files[0])
for f in files[1:]:
data_n, labels_n = load_data_one(data_dir + '/' + f)
data = np.append(data, data_n, axis=0)
labels = np.append(labels, labels_n, axis=0)
labels = np.array([ [ float(i == label) for i in range(label_count) ] for label in labels ])
return data, labels
def run_in_batch_avg(session, tensors, batch_placeholders, feed_dict={}, batch_size=200):
res = [ 0 ] * len(tensors)
batch_tensors = [ (placeholder, feed_dict[ placeholder ]) for placeholder in batch_placeholders ]
total_size = len(batch_tensors[0][1])
batch_count = int((total_size + batch_size - 1) / batch_size)
for batch_idx in range(batch_count):
current_batch_size = None
for (placeholder, tensor) in batch_tensors:
batch_tensor = tensor[ batch_idx*batch_size : (batch_idx+1)*batch_size ]
current_batch_size = len(batch_tensor)
feed_dict[placeholder] = tensor[ batch_idx*batch_size : (batch_idx+1)*batch_size ]
tmp = session.run(tensors, feed_dict=feed_dict)
res = [ r + t * current_batch_size for (r, t) in zip(res, tmp) ]
return [ r / float(total_size) for r in res ]
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.01)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.01, shape=shape)
return tf.Variable(initial)
def conv2d(input, in_features, out_features, kernel_size, with_bias=False):
W = weight_variable([ kernel_size, kernel_size, in_features, out_features ])
conv = tf.nn.conv2d(input, W, [ 1, 1, 1, 1 ], padding='SAME')
if with_bias:
return conv + bias_variable([ out_features ])
return conv
def batch_activ_conv(current, in_features, out_features, kernel_size, is_training, keep_prob):
current = tf.contrib.layers.batch_norm(current, scale=True, is_training=is_training, updates_collections=None)
current = tf.nn.relu(current)
current = conv2d(current, in_features, out_features, kernel_size)
current = tf.nn.dropout(current, keep_prob)
return current
def block(input, layers, in_features, growth, is_training, keep_prob):
current = input
features = in_features
for idx in range(layers):
tmp = batch_activ_conv(current, features, growth, 3, is_training, keep_prob)
current = tf.concat((current, tmp),3)
features += growth
return current, features
def avg_pool(input, s):
return tf.nn.avg_pool(input, [ 1, s, s, 1 ], [1, s, s, 1 ], 'VALID')
def get_dict(load_path):
import pickle
f2 = open(load_path,"rb")
load_list = pickle.load(f2)
f2.close()
return load_list
#apply INQ on gradients
def apply_prune_on_grads(grads_and_vars, dict_nzidx):
# Mask gradients with pruned elements
for key, nzidx in dict_nzidx.items():
count = 0
for grad, var in grads_and_vars:
if var.name == key+":0":
nzidx_obj = tf.cast(tf.constant(nzidx), tf.float32)
grads_and_vars[count] = (tf.multiply(nzidx_obj, grad), var)
count += 1
return grads_and_vars
def run_model(data, image_dim, label_count, depth):
weight_decay = 1e-3
layers = int((depth - 4) / 3)
xs = tf.placeholder("float", shape=[None, image_dim])
ys = tf.placeholder("float", shape=[None, label_count])
lr = tf.placeholder("float", shape=[])
keep_prob = tf.placeholder(tf.float32)
is_training = tf.placeholder("bool", shape=[])
current = tf.reshape(xs, [ -1, 32, 32, 3 ])
current = conv2d(current, 3, 16, 3)
current, features = block(current, layers, 16, 12, is_training, keep_prob)
current = batch_activ_conv(current, features, features, 1, is_training, keep_prob)
current = avg_pool(current, 2)
current, features = block(current, layers, features, 12, is_training, keep_prob)
current = batch_activ_conv(current, features, features, 1, is_training, keep_prob)
current = avg_pool(current, 2)
current, features = block(current, layers, features, 12, is_training, keep_prob)
current = tf.contrib.layers.batch_norm(current, scale=True, is_training=is_training, updates_collections=None)
current = tf.nn.relu(current)
current = avg_pool(current, 8)
final_dim = features
current = tf.reshape(current, [ -1, final_dim ])
Wfc = weight_variable([ final_dim, label_count ])
bfc = bias_variable([ label_count ])
ys_ = tf.nn.softmax( tf.matmul(current, Wfc) + bfc )
cross_entropy = -tf.reduce_mean(ys * tf.log(ys_ + 1e-12))
l2 = tf.add_n([tf.nn.l2_loss(var) for var in tf.trainable_variables()])
#Load pruned weights& mask
para_dict={}
for k in tf.global_variables():
if k not in tf.contrib.framework.get_variables_by_suffix('Momentum'):
para_dict[k.name[:-2]] = k
name = 'inqcom1697100s'
#Load mask
mask_loadpath=name+'.txt'
prune_dict = get_dict(mask_loadpath)
#set weights path
#load_path = 'inqcom3260_92849_2.ckpt'
load_path = 'inqfinal/'+name+'.ckpt'
#normal save path
normal_savepath = 'inqfinal2/'+name+'_%d.ckpt'
#best result save path
best_savepath = 'inqfinal3/'+name+'_%d_%d.ckpt'
#trainer = tf.train.GradientDescentOptimizer(lr)
trainer = tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True)
grads_and_vars = trainer.compute_gradients(cross_entropy)
grads_and_vars = apply_prune_on_grads(grads_and_vars, prune_dict)
train_step = trainer.apply_gradients(grads_and_vars)
#train_step = tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True).minimize(cross_entropy + l2 * weight_decay)
correct_prediction = tf.equal(tf.argmax(ys_, 1), tf.argmax(ys, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
session = tf.InteractiveSession()
batch_size = 64
learning_rate = 0.1
session.run(tf.global_variables_initializer())
saver = tf.train.Saver(para_dict)
train_data, train_labels = data['train_data'], data['train_labels']
batch_count = int(len(train_data) / batch_size)
batches_data = np.split(train_data[:batch_count * batch_size], batch_count)
batches_labels = np.split(train_labels[:batch_count * batch_size], batch_count)
print ("Batch per epoch: ", batch_count)
#Load weights
saver.restore(session,load_path)
#auto-change learning rate to converge quicker
sss=0
count = 0
final_acc = 0.0
best_acc = 0.0
#See loaded results&adjust learning rate
test_results = run_in_batch_avg(session, [ cross_entropy, accuracy ], [ xs, ys ],
feed_dict = { xs: data['test_data'], ys: data['test_labels'], is_training: False, keep_prob: 1. })
print (test_results)
final_acc= test_results[1]
for epoch in range(1, 1+300-sss):
if epoch >= 150-sss: learning_rate = 0.01
if epoch >= 225-sss: learning_rate = 0.001
if epoch >= 275-sss: learning_rate = 0.0001
if final_acc >= 0.77 :learning_rate = 0.01
if final_acc >= 0.9 :learning_rate = 0.001
# if final_acc >= 0.927 :learning_rate = 0.0001
for batch_idx in range(batch_count):
xs_, ys_ = batches_data[batch_idx], batches_labels[batch_idx]
batch_res = session.run([ train_step, cross_entropy, accuracy ],
feed_dict = { xs: xs_, ys: ys_, lr: learning_rate, is_training: True, keep_prob: 0.8 })
if batch_idx % 100 == 0: print (epoch, batch_idx, batch_res[1:])
saver.save(session, normal_savepath % epoch)
test_results = run_in_batch_avg(session, [ cross_entropy, accuracy ], [ xs, ys ],
feed_dict = { xs: data['test_data'], ys: data['test_labels'], is_training: False, keep_prob: 1. })
print (epoch, batch_res[1:], test_results)
#save the best result
final_acc= test_results[1]
if best_acc < final_acc:
count+=1
best_acc = final_acc
acc_num = int(final_acc*100000)
saver.save(session, best_savepath % (acc_num,count))
data_dir = 'data'
image_size = 32
image_dim = image_size * image_size * 3
meta = unpickle(data_dir + '/batches.meta')
label_names = meta['label_names']
label_count = len(label_names)
train_files = [ 'data_batch_%d' % d for d in range(1, 6) ]
train_data, train_labels = load_data(train_files, data_dir, label_count)
pi = np.random.permutation(len(train_data))
train_data, train_labels = train_data[pi], train_labels[pi]
test_data, test_labels = load_data([ 'test_batch' ], data_dir, label_count)
print ("Train:", np.shape(train_data), np.shape(train_labels))
print ("Test:", np.shape(test_data), np.shape(test_labels))
data = { 'train_data': train_data,
'train_labels': train_labels,
'test_data': test_data,
'test_labels': test_labels }
run_model(data, image_dim, label_count, 40)