-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTD3.py
140 lines (110 loc) · 5.58 KB
/
TD3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import torch
import copy
from utils import Feedforward, Memory, QFunction
class Critic(torch.nn.Module):
def __init__(self, state_dim, action_dim, learning_rate=3e-4):
super(Critic, self).__init__()
self.Q1 = QFunction(observation_dim=state_dim, action_dim=action_dim, hidden_sizes=[256, 256],
learning_rate=learning_rate)
self.Q2 = QFunction(observation_dim=state_dim, action_dim=action_dim, hidden_sizes=[256, 256],
learning_rate=learning_rate)
self.optimizer = torch.optim.Adam(self.parameters(),
lr=learning_rate,
eps=0.000001)
def forward(self, state, action):
return self.Q1.Q_value(state, action), self.Q2.Q_value(state, action)
def fit(self, state, action, target_Q):
self.train()
self.optimizer.zero_grad()
current_Q1, current_Q2 = self.forward(state, action)
loss = self.Q1.loss(current_Q1, target_Q) + self.Q2.loss(current_Q2, target_Q)
loss.backward()
self.optimizer.step()
return loss.item()
class Actor(Feedforward):
def __init__(self, observation_dim, action_dim, max_action, hidden_sizes=[256, 256], learning_rate=3e-4):
super(Actor, self).__init__(input_size=observation_dim, output_size=action_dim, hidden_sizes=hidden_sizes)
self.optimizer = torch.optim.Adam(self.parameters(),
lr=learning_rate,
eps=0.000001)
self.loss = torch.nn.MSELoss() # -self.critic.Q1(state, self.actor(state)).mean()
self.max_action = max_action
def forward(self, x):
return self.max_action * torch.tanh(super(Actor, self).forward(x))
def fit(self, critic, state):
self.train()
self.optimizer.zero_grad()
loss = -critic.Q1.Q_value(state, self(state)).mean()
loss.backward()
self.optimizer.step()
return loss.item()
class TD3:
def __init__(self, state_dim, action_dim, max_action, **config):
self._config = {
"discount": 0.99,
"tau": 0.005,
"policy_noise": 0.2,
"noise_clip": 0.5,
"policy_freq": 2,
"buffer_size": int(1e6),
"batch_size": 100
}
self._config.update(config)
self.actor = Actor(state_dim, action_dim, max_action)
self.actor_target = copy.deepcopy(self.actor)
self.critic = Critic(state_dim, action_dim)
self.critic_target = copy.deepcopy(self.critic)
self.max_action = max_action
self.train_iter = 0
self.buffer = Memory(max_size=self._config["buffer_size"])
def _update_target_net(self, net, target_net):
for param, target_param in zip(net.parameters(), target_net.parameters()):
target_param.data.copy_(self._config["tau"] * param.data + (1 - self._config["tau"]) * target_param.data)
def act(self, state):
return self.actor.predict(state)
def store_transition(self, transition):
self.buffer.add_transition(transition)
def train(self):
self.train_iter += 1
# Sample replay buffer
data = self.buffer.sample(self._config["batch_size"])
state = np.stack(data[:, 0]) # s_t
action = np.stack(data[:, 1]) # a_t for player 1 # TODO
action = action[:, :int(action.shape[-1]/2)]
reward = np.stack(data[:, 2])[:, None] # rew (batchsize,1)
next_state = np.stack(data[:, 3]) # s_t+1
done = np.stack(data[:, 4])[:, None] # done signal (batchsize,1)
state = torch.from_numpy(state).float()
action = torch.from_numpy(action).float()
next_state = torch.from_numpy(next_state).float()
with torch.no_grad():
# Select action according to policy and add clipped noise
noise = (
torch.randn_like(action) * self._config["policy_noise"]
).clamp(-self._config["noise_clip"], self._config["noise_clip"])
next_action = (
self.actor_target(next_state) + noise
).clamp(-self.max_action, self.max_action)
# Compute the target Q value
target_Q1, target_Q2 = self.critic_target(next_state, next_action)
target_Q = torch.min(target_Q1, target_Q2)
target_Q = reward + (1. - done) * self._config["discount"] * target_Q.numpy()
self.critic.fit(state, action, torch.from_numpy(target_Q).float())
if self.train_iter % self._config["policy_freq"] == 0:
self.actor.fit(self.critic, state)
# Update the frozen target models
self._update_target_net(self.critic, self.critic_target)
self._update_target_net(self.actor, self.actor_target)
def save(self, filename):
torch.save(self.critic.state_dict(), filename + "_critic")
torch.save(self.critic.optimizer.state_dict(), filename + "_critic_optimizer")
torch.save(self.actor.state_dict(), filename + "_actor")
torch.save(self.actor.optimizer.state_dict(), filename + "_actor_optimizer")
def load(self, filename):
self.critic.load_state_dict(torch.load(filename + "_critic"))
self.critic.optimizer.load_state_dict(torch.load(filename + "_critic_optimizer"))
self.critic_target = copy.deepcopy(self.critic)
self.actor.load_state_dict(torch.load(filename + "_actor"))
self.actor.optimizer.load_state_dict(torch.load(filename + "_actor_optimizer"))
self.actor_target = copy.deepcopy(self.actor)