forked from TomMao23/multiyolov5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_custom.py
723 lines (643 loc) · 44.9 KB
/
train_custom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
import argparse
import logging
import math
import os
import random
import time
from copy import deepcopy
from pathlib import Path
from threading import Thread
import numpy as np
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import test # import test.py to get mAP after each epoch
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.datasets import create_dataloader
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
fitness, fitness2, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
check_requirements, print_mutation, set_logging, one_cycle, colorstr
from utils.google_utils import attempt_download
from utils.loss import ComputeLoss, SegmentationLosses, SegFocalLoss, OhemCELoss, ProbOhemCrossEntropy2d
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel
from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
import SegmentationDataset
import torch.backends.cudnn as cudnn
logger = logging.getLogger(__name__)
def train(hyp, opt, device, tb_writer=None):
logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) # 打印超参数
save_dir, epochs, batch_size, total_batch_size, weights, rank = \
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
# Directories
wdir = save_dir / 'weights'
wdir.mkdir(parents=True, exist_ok=True) # make dir
last = wdir / 'last.pt'
best = wdir / 'best.pt'
results_file = save_dir / 'results.txt'
# Save run settings # 存超参数和优化器参数, 优化器参数,可用于resume
with open(save_dir / 'hyp.yaml', 'w') as f:
yaml.dump(hyp, f, sort_keys=False)
with open(save_dir / 'opt.yaml', 'w') as f:
yaml.dump(vars(opt), f, sort_keys=False)
# Configure
plots = not opt.evolve # create plots 不进化就画图
cuda = device.type != 'cpu'
init_seeds(2 + rank)
with open(opt.data) as f:
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
is_coco = opt.data.endswith('coco.yaml')
# Logging- Doing this before checking the dataset. Might update data_dict
loggers = {'wandb': None} # loggers dict
if rank in [-1, 0]: # -1不开DDP, 0是DDP主进程
opt.hyp = hyp # add hyperparameters
run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
loggers['wandb'] = wandb_logger.wandb
data_dict = wandb_logger.data_dict
if wandb_logger.wandb:
weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming
nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
# Model
pretrained = weights.endswith('.pt') # 有weights输入就用其初始化
if pretrained: # 有预训练参数
with torch_distributed_zero_first(rank):
attempt_download(weights) # download if not found locally
ckpt = torch.load(weights, map_location=device) # load checkpoint
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys 初始化时候不使用的参数(非resume且有配置时按cfg和model初始化来指定anchor, 否则延用pretrained weights的anchor)
state_dict = ckpt['model'].float().state_dict() # to FP32 ckpt里model键对应的值才是模型,训练结束后保存的是float16(中间保存的float32),模型的state_dict是参数,包括可训练参数和register_buffer保存的buffer parameter(Detect的anchor和gird等)
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect 赋值参数,预训练的参数赋值到新建的模型,exclude除外(即anchor使用cfg的而不是预训练)
model.load_state_dict(state_dict, strict=False) # load 调整好的预训练参数加载到模型
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
else: # 无预训练参数,只建模型
model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
with torch_distributed_zero_first(rank):
check_dataset(data_dict) # check
train_path = data_dict['train']
test_path = data_dict['val']
segtrain_path = data_dict['segtrain']
segval_path = data_dict['segval']
# Freeze 要冻结的参数 似乎只能在此代码处手动设置列表
freeze = [] # parameter names to freeze (full or partial)
for k, v in model.named_parameters():
v.requires_grad = True # train all layers 全部参数可导
if any(x in k for x in freeze): # 碰见freeze列表的层使其参数不可导
print('freezing %s' % k)
v.requires_grad = False
# Optimizer
nbs = 64 # nominal batch size
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay 权重衰减系数
logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
# 参数分组,pg0是BN,pg1是权重,pg2是偏置
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
for k, v in model.named_modules():
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
pg2.append(v.bias) # biases
if isinstance(v, nn.BatchNorm2d):
pg0.append(v.weight) # no decay
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
pg1.append(v.weight) # apply decay
# 优化器初始化, BN层参数不带权重衰减
if opt.adam:
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
else:
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
# 权重参数, 带权重衰减
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
# 偏置参数, 同样不带衰减
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
del pg0, pg1, pg2
# Scheduler https://arxiv.org/pdf/1812.01187.pdf 设置好优化器后用其设置Learning Scheduler
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
if opt.linear_lr:
lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
else:
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # 自定义lambda函数学习率衰减策略
# plot_lr_scheduler(optimizer, scheduler, epochs)
# EMA 指数滑动平均
ema = ModelEMA(model) if rank in [-1, 0] else None
# Resume
start_epoch, best_fitness = 0, 0.0
if pretrained:
# Optimizer
if ckpt['optimizer'] is not None:
optimizer.load_state_dict(ckpt['optimizer'])
best_fitness = ckpt['best_fitness']
# EMA 指数平均
if ema and ckpt.get('ema'):
ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
ema.updates = ckpt['updates']
# Results
if ckpt.get('training_results') is not None:
results_file.write_text(ckpt['training_results']) # write results.txt
# Epochs
start_epoch = ckpt['epoch'] + 1 # 预训练模型的epoch是-1
if opt.resume: # resume参数epoch应该大于0
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
if epochs < start_epoch: # 总轮数比开始轮还小, 总轮数加上已训练轮(即再训练总轮数次而不是通常的 总轮数-开始轮 次)
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
(weights, ckpt['epoch'], epochs))
epochs += ckpt['epoch'] # finetune additional epochs
del ckpt, state_dict
# Image sizes
gs = max(int(model.stride.max()), 32) # grid size (max stride) 至少32
nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj']) model最后一层是Detect, nl是其输出层数量
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples 检查图片尺寸是否合法,不合法就自动替换
# DP mode DP多线程数据并行模式, 不使用, 并行推荐DDP多进程
if cuda and rank == -1 and torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
# SyncBatchNorm 跨卡BN, 仅支持DDP
if opt.sync_bn and cuda and rank != -1:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
logger.info('Using SyncBatchNorm()')
# 检测 Trainloader
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
world_size=opt.world_size, workers=opt.workers,
image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class 纵向连接了标签后找第一列最大值, mlc的值就是类别数-1
nb = len(dataloader) # number of batches
# mlc=实际标签类别数-1 应该小于 nc模型结构支持的前景类别数 (不用等式关系, 因为结构类别多的模型可以支持训练标签类别少的数据, 反之不成立)
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
# Process 0 非DDP或DDP中的主进程
if rank in [-1, 0]:
testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader batch_size翻倍
hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
world_size=opt.world_size, workers=opt.workers,
pad=0.5, prefix=colorstr('val: '))[0] # [0]只要了loader没要dataset, 和train处理不一样
if not opt.resume: # 常规, 非resume
labels = np.concatenate(dataset.labels, 0)
c = torch.tensor(labels[:, 0]) # classes 所有对象类别(包括所有目标,不是图像)
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
# model._initialize_biases(cf.to(device))
if plots:
plot_labels(labels, names, save_dir, loggers)
if tb_writer:
tb_writer.add_histogram('classes', c, 0) #
# Anchors
if not opt.noautoanchor: # 用train dataset自动聚类选取最好anchor
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # anchor_t是最大放大倍数,yolov5公式不同于v3v4, 见核心Model推理时anchor偏移放缩公式和issue
model.half().float() # pre-reduce anchor precision 先转float16再转回32,虽然type是32,但此时参数的数值范围限到16了
# 图尺寸相同时候用这个准确测指标(batch_size设为1可以支持图尺寸不同, 或者用下面的val mode)
seg_valloader = SegmentationDataset.get_custom_loader(root=segval_path, batch_size=1,
split="val", mode="testval", # 旧版为val新版训练中验证也用testval模式
base_size=imgsz, # 原图按照长边resize到imgz输入后双线性插值到原图尺寸计算精度
# crop_size=640, # testval 时候cropsize不起作用
workers=2, pin=True) # 验证batch_size和workers得配合, 都太大会导致子进程死亡, 单进程龟速加载数据
# 我电脑上(4,4)是最快的, 更大子进程会挂(现在图大了,怎么设都会挂, BUG)
# # 图尺寸不同时候改用val模式,一般会比标准目标输入低一点
# seg_valloader = SegmentationDataset.get_citysbdd_loader(root=segval_path, batch_size=4,
# split="val", mode="val", # 和train.py不同,使用val模式
# base_size=1024, # val模式base_size无效
# # crop_size手动取,建议目标输入的短边尺寸,如cityscapes取512
# crop_size=512, # 图尺寸不同,用val,按短边resize到cropsize再crop(cropsize,cropsize)
# workers=4, pin=True) # 验证batch_size和workers得配合, 都太大会导致子进程死亡, 单进程龟速加载数据
# # 我电脑上(4,4)是最快的, 更大子进程会挂(现在图大了,怎么设都会挂, BUG)
# 分割 loader custom的base_size和crop_size的长边就是imgsz
seg_trainloader = SegmentationDataset.get_custom_loader(root=segtrain_path,
split="train", mode="train",
base_size=imgsz,
# custom的crop_size就是(imgsz, imgsz)
batch_size=batch_size,
workers=opt.workers, pin=True)
segnb = len(seg_trainloader)
# DDP mode
if cuda and rank != -1: # 没禁用(-1)就开DDP模型
model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
# nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))
# Model parameters 根据输出层数,类别数等调整损失增益,模型超参数
hyp['box'] *= 3. / nl # scale to layers
hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
hyp['label_smoothing'] = opt.label_smoothing
model.nc = nc # attach number of classes to model
model.hyp = hyp # attach hyperparameters to model
model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
model.names = names
# Start training
t0 = time.time()
nw = max(round(hyp['warmup_epochs'] * nb), 500) # number of warmup iterations, max(3 epochs, 1k iterations) 最少warmup三轮或500batch(原版1000,800就够了)
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
scheduler.last_epoch = start_epoch - 1 # do not move 配置lr_scheduler起始位置
scaler = amp.GradScaler(enabled=cuda) # 说明不是float16训练,而是16和32混合精度训练. 训练前初始化loss scaler 用于float16放大梯度后backward, optimizer.step之前自动转float32再缩回来
compute_loss = ComputeLoss(model) # init loss class 初始化检测criteria
# -----------------------------------------------------------------------------------------------------------
# 无aux模型输出不用[],有aux几个结果输出用[]包装
# Base,PSP和Lab用这个,无aux
compute_seg_loss = SegmentationLosses(aux=False, ignore_index=-1, weight=None).cuda()
# compute_seg_loss = SegFocalLoss(ignore_index=-1, gamma=2, reduction="mean").cuda()
# BiSe用这个 两个aux
# compute_seg_loss = SegmentationLosses(nclass=19, aux=True, aux_num=2, aux_weight=0.1, ignore_index=-1, weight=None).cuda()
# 一个aux,没有用这个
# compute_seg_loss = SegmentationLosses(nclass=19, aux=True, aux_num=1, aux_weight=0.1, ignore_index=-1, weight=None).cuda()
# -----------------------------------------------------------------------------------------------------------
# focalloss别用,cityscapes效果不行
# OHEM能用,理论上应该超过CE,但是目前实验效果不如CE(设成默认0.7收敛蛮快的但最终值不够好),认为与计算像素个数和学习率有关,用的话循环损失计算的语句得改一下,接口和CE还没来得及保持一致
# compute_seg_loss = OhemCELoss(thresh=0.7, ignore_index=-1, aux=False)
# compute_seg_loss = OhemCELoss(thresh=0.7, ignore_index=-1, aux=True, aux_weight=[0.15, 0.1])
detgain, seggain = 0.6, 0.35 # 检测, 分割比例
# CE、1/8单输入、batchsize13用0.65,0.35左右,注意64向下取整的梯度积累,比13*4=52大(12*5=64)通常应该降低分割损失比例或调小学习率
logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
f'Using {dataloader.num_workers} dataloader workers\n'
f'Logging results to {save_dir}\n'
f'Starting training for {epochs} epochs...')
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
mIoU = 0 # 每轮开始mIoU设置成0,因为选模型按mIoU选,为了加速训练可能n轮才测一次mIoU,对没测mIoU的模型不会存为best.pt
print(f'accumulate: {accumulate}') # 显示epoch开始时梯度积累次数(第一个值忽略, 注意warmup期间按batch变化, 此处只是辅助观察防梯度爆炸)
model.train() # epoch开始, 确保train模式 注意validation时候可能会把模型.eval()因此开始的train()很有必要
# Update image weights (optional) 更新image_weights权重, 默认不开image_weights忽略此块代码
if opt.image_weights:
# Generate indices
if rank in [-1, 0]:
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
# Broadcast if DDP
if rank != -1:
indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
dist.broadcast(indices, 0)
if rank != 0:
dataset.indices = indices.cpu().numpy()
# Update mosaic border
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
mloss = torch.zeros(4, device=device) # 检测 mean losses
msegloss = torch.zeros(1, device=device) # 混合的 mean losses, 两者计算也可知分割loss
if rank != -1:
dataloader.sampler.set_epoch(epoch) # shuffle时, 保证每个epoch顺序不同
pbar = enumerate(dataloader)
segpbar = enumerate(seg_trainloader)
logger.info(('\n' + '%10s' * 9) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'seg', 'labels', 'img_size'))
if rank in [-1, 0]:
pbar = tqdm(pbar, total=min(nb, segnb)) # progress bar # tqdm进度条迭代
segpbar = tqdm(segpbar, total=min(nb, segnb))
optimizer.zero_grad() # 每轮前清空梯度
# 暂时用zip, 每轮batch数以数量少的为准
for det_batch, seg_batch in zip(pbar, segpbar): # batch -------------------------------------------------------------
i, (imgs, targets, paths, _) = det_batch # 检测
_, (segimgs, segtargets) = seg_batch # 分割
if len(imgs)==1 or len(segimgs)==1: # 手动droplast,SE或者gloablpool后的bn不支持单个样本,检测loader调用地方太多不好droplast,这里手动
continue
# warmup等参数变化以检测为准
ni = i + nb * epoch # number integrated batches (since train start) 记录总iterations, 可以用于停止warmup
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
# Warmup
if ni <= nw:
xi = [0, nw] # x interp
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) # 修改了accumulate上限,使其不超过nbs(防止Nan)
accumulate = max(1, np.interp(ni, xi, [1, math.floor(nbs / total_batch_size)]).round()) # 梯度积累 线性插值xi=[0, 1000], yi=[1, 64/batchsize], 插入点x=ni, 之后取整, 最小限1. warmup时accumulate会逐渐从1按整数增大到目标, warmup结束后稳定在目标值 round(nbs/accumulate), 例如batchsize32实际上两batch才更新一次,等效于64
for j, x in enumerate(optimizer.param_groups): # warmup过程中逐渐把三组参数的lr调到lr0
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
# Multi-scale 默认关multi scale
if opt.multi_scale:
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
sf = sz / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
# Forward and Backward 对比原版yolov5此处修改, 否则batchsize只能取单检测时候的一半, 这种写法可以更大一点
with amp.autocast(enabled=cuda): # 混合精度训练中用来代替autograd
pred = model(imgs) # forward
loss, loss_items = compute_loss(pred[0], targets.to(device)) # loss scaled by batch_size
if rank != -1: # DDP中loss * GPU数
loss *= opt.world_size # gradient averaged between devices in DDP mode
if opt.quad:
loss *= 4.
loss *= detgain # 检测loss比例
scaler.scale(loss).backward()
imgshape = imgs.shape[-1]
if plots and ni >= 3:
del imgs # 前三个batch画图不能del
else:
imgs = imgs.to(torch.device('cpu'), non_blocking=True) # 释放 segimgs输入后就没被调用会被pytorch自动回收不用手动释放(img后续有被调用要手动释放)
segimgs = segimgs.to(device, non_blocking=True) # 分割已经做过totensor了, 不用/255
with amp.autocast(enabled=cuda): # 混合精度训练中用来代替autograd
pred = model(segimgs)
# -----------------------------------------------------------------------------------------------------------
# 无aux模型输出不用[],有aux模型几个结果输出用[]包装
# Base,PSP和Lab用这个,无aux
segloss = compute_seg_loss(pred[1], segtargets.to(device)) * batch_size # 分割loss CE是平均loss, 配合检测做梯度积累, 因此乘以batchsize(注意有梯度积累其真实batchsize约是nbs=64)
# Bise用这个,两个aux
# segloss = compute_seg_loss(pred[1][0], pred[1][1], pred[1][2], segtargets.to(device)) * batch_size
# 一个aux,没有用这个
# segloss = compute_seg_loss(pred[1][0], pred[1][1], segtargets.to(device)) * batch_size
# -----------------------------------------------------------------------------------------------------------
segloss *= seggain
scaler.scale(segloss).backward()
del segimgs
# Optimize
if ni % accumulate == 0: # 梯度积累accumulate次后才优化,
scaler.step(optimizer) # optimizer.step # 混合精度训练优化时用scaler
scaler.update()
optimizer.zero_grad() # 每次更新完参数才清空梯度, 不更新时累计
if ema: # 不开DDP和DDP主进程中ema开启, 每次更新ema
ema.update(model)
# Print
if rank in [-1, 0]:
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
msegloss = (msegloss * i + segloss.detach()/total_batch_size) / (i + 1)
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
s = ('%10s' * 2 + '%10.4g' * 7) % (
'%g/%g' % (epoch, epochs - 1), mem, *mloss, msegloss, targets.shape[0], imgshape)
pbar.set_description(s)
# Plot
if plots and ni < 3:
f = save_dir / f'train_batch{ni}.jpg' # filename
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
# if tb_writer:
# tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
# tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), []) # add model graph
elif plots and ni == 10 and wandb_logger.wandb:
wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
save_dir.glob('train*.jpg') if x.exists()]})
# end batch ------------------------------------------------------------------------------------------------
# end epoch ----------------------------------------------------------------------------------------------------
# Scheduler
lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
scheduler.step() # 更新Scheduler
# DDP process 0 or single-GPU
if rank in [-1, 0]:
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
# pixACC, mIoU
if epoch % 10 == 0 or (epochs - epoch) < 40:
mIoU = test.seg_validation(model=ema.ema, valloader=seg_valloader, device=device, n_segcls=19,
half_precision=True)
# mAP
final_epoch = epoch + 1 == epochs # 是否是最后一轮
if not opt.notest or final_epoch: # Calculate mAP
wandb_logger.current_epoch = epoch + 1
results, maps, times = test.test(data_dict,
batch_size=batch_size * 2,
imgsz=imgsz_test,
model=ema.ema,
single_cls=opt.single_cls,
dataloader=testloader,
save_dir=save_dir,
verbose=nc < 50 and final_epoch,
plots=plots and final_epoch,
wandb_logger=wandb_logger,
compute_loss=compute_loss,
is_coco=is_coco)
# Write
with open(results_file, 'a') as f:
f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
if len(opt.name) and opt.bucket:
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
# Log
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
'x/lr0', 'x/lr1', 'x/lr2'] # params
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): # 写tensorboard
if tb_writer:
tb_writer.add_scalar(tag, x, epoch) # tensorboard
if wandb_logger.wandb:
wandb_logger.log({tag: x}) # W&B
# Update best mIoU #mAP
# fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] 按0.1*AP.5+0.9*AP.5:.95指标衡量模型
fi = fitness2(np.array(results).reshape(1, -1), mIoU) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] 按0.1*AP.5+0.9*AP.5:.95指标衡量模型
if fi > best_fitness:
best_fitness = fi
wandb_logger.end_epoch(best_result=best_fitness == fi)
# Save model
if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
ckpt = {'epoch': epoch,
'best_fitness': best_fitness,
'training_results': results_file.read_text(),
'model': deepcopy(model.module if is_parallel(model) else model).half(),
'ema': deepcopy(ema.ema).half(),
'updates': ema.updates,
'optimizer': optimizer.state_dict(),
'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}
# Save last, best and delete
torch.save(ckpt, last)
if best_fitness == fi:
torch.save(ckpt, best)
if wandb_logger.wandb:
if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
wandb_logger.log_model(
last.parent, opt, epoch, fi, best_model=best_fitness == fi)
del ckpt
# end epoch ----------------------------------------------------------------------------------------------------
# end training
if rank in [-1, 0]:
# Plots
if plots: # 不进化就画图
plot_results(save_dir=save_dir) # save as results.png
if wandb_logger.wandb:
files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
if (save_dir / f).exists()]})
# Test best.pt
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
for m in (last, best) if best.exists() else (last): # speed, mAP tests
results, _, _ = test.test(opt.data,
batch_size=batch_size * 2,
imgsz=imgsz_test,
conf_thres=0.001,
iou_thres=0.7,
model=attempt_load(m, device).half(),
single_cls=opt.single_cls,
dataloader=testloader,
save_dir=save_dir,
save_json=True,
plots=False,
is_coco=is_coco)
# Strip optimizers
final = best if best.exists() else last # final model
for f in last, best:
if f.exists():
strip_optimizer(f) # strip optimizers
if opt.bucket:
os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
if wandb_logger.wandb and not opt.evolve: # Log the stripped model
wandb_logger.wandb.log_artifact(str(final), type='model',
name='run_' + wandb_logger.wandb_run.id + '_model',
aliases=['last', 'best', 'stripped'])
wandb_logger.finish_run()
else:
dist.destroy_process_group()
torch.cuda.empty_cache()
return results
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
parser.add_argument('--project', default='runs/train', help='save to project/name')
parser.add_argument('--entity', default=None, help='W&B entity')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--quad', action='store_true', help='quad dataloader')
parser.add_argument('--linear-lr', action='store_true', help='linear LR')
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
opt = parser.parse_args()
# Set DDP variables DDP常规初始化
opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1 # 获取总进程数world_size
opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1 # global_rank是所有进程可用的GPU号, local_rank是当前进程对应GPU号
set_logging(opt.global_rank)
if opt.global_rank in [-1, 0]:
# check_git_status() # 检测git版本,网络不好会卡住,手动关闭
check_requirements()
# Resume
wandb_run = check_wandb_resume(opt) # wandb有bug,没装
# 断点重续且没有wandb库
if opt.resume and not wandb_run: # resume an interrupted run
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path 找要续的模型pt
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
apriori = opt.global_rank, opt.local_rank
with open(Path(ckpt).parent.parent / 'opt.yaml') as f: # 找 优化器 配置文件
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace
opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate
logger.info('Resuming training from %s' % ckpt)
else:
# opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' # cfg和weights至少有一个
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
opt.name = 'evolve' if opt.evolve else opt.name # project名字,用于保存文件夹
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
# DDP mode 数据多进程并行
opt.total_batch_size = opt.batch_size # 总batchsize
device = select_device(opt.device, batch_size=opt.batch_size) # 设备数
if opt.local_rank != -1: # 默认是-1不开启DDP
assert torch.cuda.device_count() > opt.local_rank
torch.cuda.set_device(opt.local_rank)
device = torch.device('cuda', opt.local_rank)
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend DDP初始化进程组
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count' # 一般一卡开一进程, batchsize可被进程数整除
opt.batch_size = opt.total_batch_size // opt.world_size # 每个进程batchsize
# Hyperparameters 配置超参数
with open(opt.hyp) as f:
hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
# Train
logger.info(opt)
if not opt.evolve: # 没有用进化算法(默认)
tb_writer = None # init loggers
if opt.global_rank in [-1, 0]:
prefix = colorstr('tensorboard: ')
logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
train(hyp, opt, device, tb_writer)
# Evolve hyperparameters (optional)
else:
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
'box': (1, 0.02, 0.2), # box loss gain
'cls': (1, 0.2, 4.0), # cls loss gain
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
'iou_t': (0, 0.1, 0.7), # IoU training threshold
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
'mixup': (1, 0.0, 1.0)} # image mixup (probability)
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
opt.notest, opt.nosave = True, True # only test/save final epoch
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
if opt.bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
for _ in range(300): # generations to evolve
if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
# Select parent(s)
parent = 'single' # parent selection method: 'single' or 'weighted'
x = np.loadtxt('evolve.txt', ndmin=2)
n = min(5, len(x)) # number of previous results to consider
x = x[np.argsort(-fitness(x))][:n] # top n mutations
w = fitness(x) - fitness(x).min() # weights
if parent == 'single' or len(x) == 1:
# x = x[random.randint(0, n - 1)] # random selection
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
elif parent == 'weighted':
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
# Mutate
mp, s = 0.8, 0.2 # mutation probability, sigma
npr = np.random
npr.seed(int(time.time()))
g = np.array([x[0] for x in meta.values()]) # gains 0-1
ng = len(meta)
v = np.ones(ng)
while all(v == 1): # mutate until a change occurs (prevent duplicates)
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
hyp[k] = float(x[i + 7] * v[i]) # mutate
# Constrain to limits
for k, v in meta.items():
hyp[k] = max(hyp[k], v[1]) # lower limit
hyp[k] = min(hyp[k], v[2]) # upper limit
hyp[k] = round(hyp[k], 5) # significant digits
# Train mutation
results = train(hyp.copy(), opt, device)
# Write mutation results
print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
# Plot results
plot_evolution(yaml_file)
print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')