-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
67 lines (60 loc) · 1.81 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
"""
Date: 2021-06-01 17:18:25
LastEditors: GodK
"""
import time
common = {
"exp_name": "cluener",
"encoder": "BERT",
"data_home": "./datasets",
"bert_path": "./pretrained_models/bert-base-chinese", # bert-base-chinese or other plm from https://huggingface.co/models
"run_type": "train", # train, eval
"f1_2_save": 0.5, # 存模型的最低f1值
"logger": "default" # wandb or default,default意味着只输出日志到控制台
}
# wandb的配置,只有在logger=wandb时生效。用于可视化训练过程
wandb_config = {
"run_name": time.strftime('%Y-%m-%d %H:%M:%S', time.gmtime()),
"log_interval": 10
}
train_config = {
"train_data": "train.json",
"valid_data": "dev.json",
"test_data": "dev.json",
"ent2id": "ent2id.json",
"path_to_save_model": "./outputs", # 在logger不是wandb时生效
"hyper_parameters": {
"lr": 2e-5,
"batch_size": 64,
"epochs": 50,
"seed": 2333,
"max_seq_len": 128,
"scheduler": "CAWR" # CAWR, Step, None
}
}
eval_config = {
"model_state_dir": "./outputs/cluener/", # 预测时注意填写模型路径(时间tag文件夹)
"run_id": "",
"last_k_model": 1, # 取倒数第几个model_state
"predict_data": "test.json",
"ent2id": "ent2id.json",
"save_res_dir": "./results",
"hyper_parameters": {
"batch_size": 16,
"max_seq_len": 512,
}
}
cawr_scheduler = {
# CosineAnnealingWarmRestarts
"T_mult": 1,
"rewarm_epoch_num": 2,
}
step_scheduler = {
# StepLR
"decay_rate": 0.999,
"decay_steps": 200,
}
# ---------------------------------------------
train_config["hyper_parameters"].update(**cawr_scheduler, **step_scheduler)
train_config = {**train_config, **common, **wandb_config}
eval_config = {**eval_config, **common}