forked from PaddlePaddle/PGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sample.py
280 lines (240 loc) · 9.81 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file implement the sampler to sample metapath random walk sequence for
training metapath2vec model.
"""
import multiprocessing
from multiprocessing import Pool
from multiprocessing import Process
import argparse
import sys
import os
import numpy as np
import pickle as pkl
import tqdm
import time
import logging
import random
from pgl import heter_graph
from pgl.sample import metapath_randomwalk
from utils import *
class Sampler(object):
"""Implemetation of sampler in order to sample metapath random walk.
Args:
config: dict, some configure parameters.
"""
def __init__(self, config):
self.config = config
self.build_graph()
def build_graph(self):
"""Build pgl heterogeneous graph.
"""
self.conf_id2index, self.conf_name2index, conf_node_type = self.remapping_id(
self.config['data_path'] + 'id_conf.txt',
start_index=0,
node_type='conf')
logging.info('%d venues have been loaded.' % (len(self.conf_id2index)))
self.author_id2index, self.author_name2index, author_node_type = self.remapping_id(
self.config['data_path'] + 'id_author.txt',
start_index=len(self.conf_id2index),
node_type='author')
logging.info('%d authors have been loaded.' %
(len(self.author_id2index)))
self.paper_id2index, self.paper_name2index, paper_node_type = self.remapping_id(
self.config['data_path'] + 'paper.txt',
start_index=(len(self.conf_id2index) + len(self.author_id2index)),
node_type='paper',
separator='\t')
logging.info('%d papers have been loaded.' %
(len(self.paper_id2index)))
node_types = conf_node_type + author_node_type + paper_node_type
num_nodes = len(node_types)
edges_by_types = {}
paper_author_edges = self.load_edges(
self.config['data_path'] + 'paper_author.txt', self.paper_id2index,
self.author_id2index)
paper_conf_edges = self.load_edges(
self.config['data_path'] + 'paper_conf.txt', self.paper_id2index,
self.conf_id2index)
# edges_by_types['edge'] = paper_author_edges + paper_conf_edges
edges_by_types['p2c'] = paper_conf_edges
edges_by_types['c2p'] = [(dst, src) for src, dst in paper_conf_edges]
edges_by_types['p2a'] = paper_author_edges
edges_by_types['a2p'] = [(dst, src) for src, dst in paper_author_edges]
# logging.info('%d edges have been loaded.' %
# (len(edges_by_types['edge'])))
node_features = {
'index': np.array([i for i in range(num_nodes)]).reshape(
-1, 1).astype(np.int64)
}
self.graph = heter_graph.HeterGraph(
num_nodes=num_nodes,
edges=edges_by_types,
node_types=node_types,
node_feat=node_features)
def remapping_id(self, file_, start_index, node_type, separator='\t'):
"""Mapp the ID and name of nodes to index.
"""
node_types = []
id2index = {}
name2index = {}
index = start_index
with open(file_, encoding="ISO-8859-1") as reader:
for line in reader:
tokens = line.strip().split(separator)
id2index[tokens[0]] = index
if len(tokens) == 2:
name2index[tokens[1]] = index
node_types.append((index, node_type))
index += 1
return id2index, name2index, node_types
def load_edges(self, file_, src2index, dst2index, symmetry=False):
"""Load edges from file.
"""
edges = []
with open(file_, 'r') as reader:
for line in reader:
items = line.strip().split()
src, dst = src2index[items[0]], dst2index[items[1]]
edges.append((src, dst))
if symmetry:
edges.append((dst, src))
edges = list(set(edges))
return edges
def generate_multi_class_data(self, name_label_file):
"""Mapp the data that will be used in multi class task to index.
"""
if 'author' in name_label_file:
name2index = self.author_name2index
else:
name2index = self.conf_name2index
index_label_list = []
with open(name_label_file, encoding="ISO-8859-1") as reader:
for line in reader:
tokens = line.strip().split(' ')
name, label = tokens[0], int(tokens[1])
index = name2index[name]
index_label_list.append((index, label))
return index_label_list
def walk_generator(graph, batch_size, metapath, n_type, walk_length):
"""Generate metapath random walk.
"""
np.random.seed(os.getpid())
while True:
for start_nodes in graph.node_batch_iter(
batch_size=batch_size, n_type=n_type):
walks = metapath_randomwalk(
graph=graph,
start_nodes=start_nodes,
metapath=metapath,
walk_length=walk_length)
yield walks
def walk_to_files(g, batch_size, metapath, n_type, walk_length, max_num,
filename):
"""Generate metapath randomwalk and save in files"""
# g, batch_size, metapath, n_type, walk_length, max_num, filename = args
with open(filename, 'w') as writer:
cc = 0
for walks in walk_generator(g, batch_size, metapath, n_type,
walk_length):
for walk in walks:
writer.write("%s\n" % "\t".join([str(i) for i in walk]))
cc += 1
if cc == max_num:
return
return
def multiprocess_generate_walks_to_files(graph, n_type, meta_path, num_walks,
walk_length, batch_size,
num_sample_workers, saved_path):
"""Use multiprocess to generate metapath random walk to files.
"""
num_nodes_by_type = graph.num_nodes_by_type(n_type)
logging.info("num_nodes_by_type: %s" % num_nodes_by_type)
max_num = (num_walks * num_nodes_by_type // num_sample_workers) + 1
logging.info("max sample number of every worker: %s" % max_num)
args = []
for i in range(num_sample_workers):
filename = os.path.join(saved_path, 'part-%05d' % (i))
args.append((graph, batch_size, meta_path, n_type, walk_length,
max_num, filename))
ps = []
for i in range(num_sample_workers):
p = Process(target=walk_to_files, args=args[i])
p.start()
ps.append(p)
for i in range(num_sample_workers):
ps[i].join()
# pool = Pool(num_sample_workers)
# pool.map(walk_to_files, args)
# pool.close()
# pool.join()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='metapath2vec')
parser.add_argument(
'-c',
'--config',
default=None,
type=str,
help='config file path (default: None)')
args = parser.parse_args()
if args.config:
# load config file
config = Config(args.config, isCreate=False, isSave=False)
config = config()
config = config['sampler']['args']
else:
raise AssertionError(
"Configuration file need to be specified. Add '-c config.yaml', for example."
)
log_format = '%(asctime)s-%(levelname)s-%(name)s: %(message)s'
logging.basicConfig(level="INFO", format=log_format)
logging.info(config)
log_format = '%(asctime)s-%(levelname)s-%(name)s: %(message)s'
logging.basicConfig(level=getattr(logging, 'INFO'), format=log_format)
if not os.path.exists(config['output_path']):
os.makedirs(config['output_path'])
config['walk_saved_path'] = config['output_path'] + config[
'walk_saved_path']
if not os.path.exists(config['walk_saved_path']):
os.makedirs(config['walk_saved_path'])
sampler = Sampler(config)
begin = time.time()
logging.info('multi process sampling')
multiprocess_generate_walks_to_files(
graph=sampler.graph,
n_type=config['first_node_type'],
meta_path=config['metapath'],
num_walks=config['num_walks'],
walk_length=config['walk_length'],
batch_size=config['walk_batch_size'],
num_sample_workers=config['num_sample_workers'],
saved_path=config['walk_saved_path'], )
logging.info('total time: %.4f' % (time.time() - begin))
logging.info('generating multi class data')
word_label_list = sampler.generate_multi_class_data(config[
'author_label_file'])
with open(config['output_path'] + config['new_author_label_file'],
'w') as writer:
for line in word_label_list:
line = [str(i) for i in line]
writer.write(' '.join(line) + '\n')
word_label_list = sampler.generate_multi_class_data(config[
'venue_label_file'])
with open(config['output_path'] + config['new_venue_label_file'],
'w') as writer:
for line in word_label_list:
line = [str(i) for i in line]
writer.write(' '.join(line) + '\n')
logging.info('finished')