|
| 1 | +''' |
| 2 | +1μ°¨μλ : μκ° λ³΅μ‘λ O(n)μΌλ‘ ν΄κ²° μ€ν¨..;; |
| 3 | +Approach |
| 4 | +- nums 리μ€νΈκ° λΉμ΄μλ κ²½μ° 0μ λ°νν©λλ€. |
| 5 | +- nums 리μ€νΈμ μ€λ³΅μ μ κ±°νκ³ μ λ ¬ν©λλ€. |
| 6 | +- μ λ ¬λ 리μ€νΈλ₯Ό μννλ©° μ΄μ μ«μμ νμ¬ μ«μκ° μ°μλλμ§ νμΈν©λλ€. |
| 7 | +- μ°μλλ€λ©΄ countλ₯Ό μ¦κ°μν€κ³ , μ°μλμ§ μλλ€λ©΄ max_countμ λΉκ΅νμ¬ κ°±μ ν countλ₯Ό 1λ‘ μ΄κΈ°νν©λλ€. |
| 8 | +- μ΅μ’
μ μΌλ‘ max_countλ₯Ό λ°νν©λλ€. |
| 9 | +
|
| 10 | +Time Complexity: O(n log n) |
| 11 | +- μ€λ³΅ μ κ±° λ° μ λ ¬μ O(n log n) λ°μ |
| 12 | +
|
| 13 | +Space Complexity: O(n) |
| 14 | +- μ€λ³΅ μ κ±°λ 리μ€νΈ μ μ₯ 곡κ°μΌλ‘ μΈν΄ O(n) λ°μ |
| 15 | +''' |
| 16 | +class Solution: |
| 17 | + def longestConsecutive(self, nums: List[int]) -> int: |
| 18 | + # 리μ€νΈμ κ°μ΄ μλ κ²½μ°λ 0 λ°ν |
| 19 | + if len(nums) == 0: |
| 20 | + return 0 |
| 21 | + |
| 22 | + # μ λ ¬ |
| 23 | + new_nums = list(set(nums)) |
| 24 | + new_nums.sort() |
| 25 | + # λ³μ μμ± : λ°°μ΄μ κΈΈμ΄κ° 1μ΄μμΈ κ²½μ° μ°μλλ μ«μλ 무쑰건 1κ° ν¬ν¨λλ€κ³ κ°μ |
| 26 | + count = 1 |
| 27 | + max_count = 1 |
| 28 | + |
| 29 | + for idx, val in enumerate(new_nums): |
| 30 | + # 첫 λ²μ§Έ μΈλ±νΈ(idx == 0)λ λΉκ΅ν μ΄μ κ°μ΄ μμΌλ―λ‘ κ·Έλ₯ 건λλ°κΈ° |
| 31 | + if idx == 0: |
| 32 | + continue |
| 33 | + if new_nums[idx-1] +1 == val: |
| 34 | + count+=1 |
| 35 | + # λ§μ§λ§ κ°μΈ κ²½μ° |
| 36 | + if idx == len(new_nums)-1: |
| 37 | + if max_count <= count: |
| 38 | + max_count = count |
| 39 | + else: |
| 40 | + # μ΄μ κ°κ³Ό μ°μλμ§ μλ κ²½μ° |
| 41 | + if max_count <= count: |
| 42 | + max_count = count |
| 43 | + count = 1 |
| 44 | + else: |
| 45 | + count = 1 |
| 46 | + |
| 47 | + return max_count |
| 48 | + |
| 49 | +''' |
| 50 | +2μ°¨μλ : Set μλ£κ΅¬μ‘° νμ© |
| 51 | +Approach |
| 52 | +- Set μλ£κ΅¬μ‘°λ‘ μ€λ³΅ κ°μ μ κ±°νκ³ , Setμ νμ©ν μ‘΄μ¬ μ¬λΆ νμΈ μκ°μ O(1)μ΄κΈ° λλ¬Έμ μ΄λ₯Ό νμ©νμ΅λλ€. |
| 53 | +- nums 리μ€νΈκ° λΉμ΄μ΄λ κ²½μ° 0μ λ°νν©λλ€. |
| 54 | +- SetμΌλ‘ μ€λ³΅λ κ°μ μ κ±°ν©λλ€. |
| 55 | +- Setμ μννλ©° κ° κ°μ λν΄ val-1μ΄ Setμ μλ κ²½μ° μλ‘μ΄ μ°μ μμ΄μ μμμ μΌλ‘ κ°μ£Όν©λλ€. |
| 56 | +- μμμ μ΄νλ‘ Whileλ¬Έμ μ¬μ©ν΄μ val+1, val+2,... κ° Setμ μ‘΄μ¬νλμ§ νμΈνλ©° countλ₯Ό μ¦κ°μν΅λλ€. |
| 57 | +- μ΅μ’
μ μΌλ‘ max_countλ₯Ό λ°νν©λλ€. |
| 58 | +
|
| 59 | +Time Complexity: O(n) |
| 60 | +- Arrayλ₯Ό SetμΌλ‘ λ³ν: O(n) |
| 61 | +- κ° μμμ λν΄: |
| 62 | + - μμμ μ΄ μλ κ²½μ°: if (val - 1) not in num_set β O(1) ν λ°λ‘ λμ΄κ° |
| 63 | + - μμμ μΈ κ²½μ°: whileλ‘ μ°μ ꡬκ°μ λκΉμ§ νμ: κ° μ«μλ μ°μλλ μ«μ λ΄μμ μ΅λ ν λ²μ©λ§ λ°©λ¬Έλλ―λ‘, |
| 64 | + μ 체 while λ°λ³΅ νμμ ν©μ O(n)μ λμ§ μμ. |
| 65 | +
|
| 66 | +Space Complexity: O(n) |
| 67 | +- Set μλ£κ΅¬μ‘°μ μ€λ³΅ μ κ±°λ κ°λ€μ μ μ₯νλλ° O(n) λ°μ |
| 68 | +''' |
| 69 | +class Solution: |
| 70 | + def longestConsecutive(self, nums: List[int]) -> int: |
| 71 | + # κ°μ΄ μλ κ²½μ° 0 λ°ν |
| 72 | + if len(nums) == 0: |
| 73 | + return 0 |
| 74 | + |
| 75 | + # setμΌλ‘ μ€λ³΅λ κ° μ κ±° |
| 76 | + num_set = set(nums) |
| 77 | + max_count = 1 |
| 78 | + |
| 79 | + for val in num_set: |
| 80 | + # val-1 μ΄ μλ€λ©΄, valμ μλ‘μ΄ μ°μ μμ΄μ μμμ |
| 81 | + if (val - 1) not in num_set: |
| 82 | + current = val |
| 83 | + count = 1 |
| 84 | + |
| 85 | + # μμμ μ΄ν μ°μλλ μ«μκ° setμμ μλμ§ κ²μ¦ |
| 86 | + while (current + 1) in num_set: |
| 87 | + current += 1 |
| 88 | + count += 1 |
| 89 | + # whileλ¬Έ νμΆ (=μ°μλλ μ«μκ° μλ κ²½μ°) μ΅λ μ°μλ μ«μ κΈΈμ΄μ λΉκ΅ν¨ |
| 90 | + if count > max_count: |
| 91 | + max_count = count |
| 92 | + |
| 93 | + return max_count |
0 commit comments