-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodules.py
106 lines (90 loc) · 5.7 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import tensorflow as tf
import numpy as np
def normalize(inputs, epsilon=1e-8, scope="normalize", reuse=None):
with tf.variable_scope(scope, reuse=reuse):
inputs_shape = inputs.get_shape()
params_shape = inputs_shape[-1:]
mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True)
beta = tf.get_variable(name='beta', shape=params_shape, dtype=tf.float32, initializer=tf.zeros_initializer())
gamma = tf.get_variable(name='scale', shape=params_shape, dtype=tf.float32, initializer=tf.ones_initializer())
normalized = (inputs - mean) / ((variance + epsilon) ** .5)
outputs = gamma * normalized + beta
return outputs
def embedding(inputs, vocab_size=None, embedding_size=None, zero_pad=False, scale=False, scope="embedding", reuse=None, initializer=None):
with tf.variable_scope(scope, reuse=reuse):
if initializer:
lookup_table = initializer
else:
lookup_table = tf.get_variable('lookup_table', dtype=tf.float32, shape=[vocab_size, embedding_size], initializer=tf.contrib.layers.xavier_initializer())
if zero_pad:
lookup_table = tf.concat((tf.zeros(shape=[1, embedding_size]), lookup_table[1:, :]), 0)
outputs = tf.nn.embedding_lookup(lookup_table, inputs)
if scale:
outputs = outputs * (embedding_size ** 0.5)
return outputs
def positional_encoding(inputs, num_units, max_len, zero_pad=True, scale=True, scope="positional_encoding", reuse=None):
# N, T = inputs.get_shape().as_list()
# N, T = tf.shape(inputs)
inputs_shape = tf.shape(inputs)
N = inputs_shape[0]
T_real = inputs_shape[1]
T = max_len
with tf.variable_scope(scope, reuse=reuse, dtype=tf.float32):
position_ind = tf.tile(tf.expand_dims(tf.range(T_real), 0), [N, 1])
position_enc = np.array([[pos / np.power(10000, 2 * (i // 2) /num_units) for i in range(num_units)] for pos in range(T)], dtype=np.float32)
position_enc[:, 0::2] = np.sin(position_enc[:, 0::2])
position_enc[:, 1::2] = np.cos(position_enc[:, 1::2])
lookup_table = tf.convert_to_tensor(position_enc)
if zero_pad:
lookup_table = tf.concat((tf.zeros(shape=[1, num_units]), lookup_table[1:, :]), 0)
outputs = tf.nn.embedding_lookup(lookup_table, position_ind)
if scale:
outputs = outputs * (num_units ** 0.5)
return outputs
def multihead_attention(queries, keys, num_units=None, num_heads=8, dropout_rate=0, is_training=True, causality=False, scope="multihead_attention", reuse=None):
with tf.variable_scope(scope, reuse=reuse):
if num_units is None:
num_units = queries.get_shape().as_list()[-1]
Q = tf.layers.dense(queries, num_units, activation=tf.nn.relu) # (N, T_q, C)
K = tf.layers.dense(keys, num_units, activation=tf.nn.relu) # (N, T_k, C)
V = tf.layers.dense(keys, num_units, activation=tf.nn.relu) # (N, T_k, C)
Q_ = tf.concat(tf.split(Q, num_heads, axis=2), axis=0) # (h*N, T_q, C/h)
K_ = tf.concat(tf.split(K, num_heads, axis=2), axis=0) # (h*N, T_k, C/h)
V_ = tf.concat(tf.split(V, num_heads, axis=2), axis=0) # (h*N, T_k, C/h)
outputs = tf.matmul(Q_, tf.transpose(K_, [0, 2, 1])) # (h*N, T_q, T_k)
outputs = outputs / (K_.get_shape().as_list()[-1] ** 0.5)
key_masks = tf.sign(tf.abs(tf.reduce_sum(keys, axis=-1))) # (N, T_k)
key_masks = tf.tile(key_masks, [num_heads, 1]) # (h*N, T_k)
key_masks = tf.tile(tf.expand_dims(key_masks, 1), [1, tf.shape(queries)[1], 1]) # (h*N, T_q, T_k)
paddings = tf.ones_like(outputs) * (-2 ** 32 + 1)
outputs = tf.where(tf.equal(key_masks, 0), paddings, outputs) # (h*N, T_q, T_k)
if causality:
diag_vals = tf.ones_like(outputs[0, :, :]) # (T_q, T_k)
tril = tf.linalg.LinearOperatorLowerTriangular(diag_vals).to_dense() # (T_q, T_k)
masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(outputs)[0], 1, 1]) # (h*N, T_q, T_k)
paddings = tf.ones_like(masks) * (-2 ** 32 + 1)
outputs = tf.where(tf.equal(masks, 0), paddings, outputs) # (h*N, T_q, T_k)
outputs = tf.nn.softmax(outputs) # (h*N, T_q, T_k)
attn_weights = outputs
query_masks = tf.sign(tf.abs(tf.reduce_sum(queries, axis=-1))) # (N, T_q)
query_masks = tf.tile(query_masks, [num_heads, 1]) # (h*N, T_q)
query_masks = tf.tile(tf.expand_dims(query_masks, -1), [1, 1, tf.shape(keys)[1]]) # (h*N, T_q, T_k)
outputs *= query_masks # broadcasting. (N, T_q, C)
outputs = tf.layers.dropout(outputs, rate=dropout_rate, training=tf.convert_to_tensor(is_training))
outputs = tf.matmul(outputs, V_) # ( h*N, T_q, C/h)
outputs = tf.concat(tf.split(outputs, num_heads, axis=0), axis=2) # (N, T_q, C)
outputs += queries
outputs = normalize(outputs, scope=scope) # (N, T_q, C)
return outputs, attn_weights
def feedforward(inputs, num_units=[2048, 512], scope="feed_forward", reuse=None):
with tf.variable_scope(scope, reuse=reuse):
params = {"inputs": inputs, "filters": num_units[0], "kernel_size": 1, "activation": tf.nn.relu, "use_bias": True}
outputs = tf.layers.conv1d(**params)
params = {"inputs": outputs, "filters": num_units[1], "kernel_size": 1, "activation": None, "use_bias": True}
outputs = tf.layers.conv1d(**params)
outputs += inputs
outputs = normalize(outputs, scope=scope)
return outputs
def label_smoothing(inputs, epsilon=0.1):
K = inputs.get_shape().as_list()[-1] # number of channels
return ((1 - epsilon) * inputs) + (epsilon / K)