forked from xiaxin1998/DHCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
262 lines (237 loc) · 11.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import datetime
import math
import numpy as np
import torch
from torch import nn, backends
from torch.nn import Module, Parameter
import torch.nn.functional as F
import torch.sparse
from scipy.sparse import coo
import time
from numba import jit
import heapq
from tqdm import tqdm
def trans_to_cuda(variable):
if torch.cuda.is_available():
return variable.cuda()
else:
return variable
def trans_to_cpu(variable):
if torch.cuda.is_available():
return variable.cpu()
else:
return variable
class HyperConv(Module):
def __init__(self, layers,dataset,emb_size=100):
super(HyperConv, self).__init__()
self.emb_size = emb_size
self.layers = layers
self.dataset = dataset
def forward(self, adjacency, embedding):
item_embeddings = embedding
item_embedding_layer0 = item_embeddings
final = [item_embedding_layer0]
for i in range(self.layers):
item_embeddings = torch.sparse.mm(trans_to_cuda(adjacency), item_embeddings)
final.append(item_embeddings)
final1 = trans_to_cuda(torch.stack(final))
item_embeddings = torch.sum(final1, 0)
# item_embeddings = torch.sum(final, 0) / (self.layers+1)
return item_embeddings
class LineConv(Module):
def __init__(self, layers,batch_size,emb_size=100):
super(LineConv, self).__init__()
self.emb_size = emb_size
self.batch_size = batch_size
self.layers = layers
def forward(self, item_embedding, D, A, session_item, session_len):
# zeros = torch.cuda.FloatTensor(1,self.emb_size).fill_(0)
zeros = torch.zeros([1,self.emb_size], device='cuda')
item_embedding = torch.cat([zeros, item_embedding], 0)
seq_h = []
for i in torch.arange(len(session_item)):
seq_h.append(torch.index_select(item_embedding, 0, session_item[i]))
seq_h1 = trans_to_cuda(torch.tensor([item.cpu().detach().numpy() for item in seq_h]))
session_emb_lgcn = torch.div(torch.sum(seq_h1, 1), session_len)
session = [session_emb_lgcn]
DA = torch.mm(D, A).float()
for i in range(self.layers):
session_emb_lgcn = torch.mm(DA, session_emb_lgcn)
session.append(session_emb_lgcn)
session1 = trans_to_cuda(torch.stack(session))
session_emb_lgcn = torch.sum(session1, 0)
# session_emb_lgcn = np.sum(session, 0)/ (self.layers+1)
return session_emb_lgcn
class DHCN(Module):
def __init__(self, adjacency, n_node,lr, layers,l2, beta,dataset,emb_size=100, batch_size=100):
super(DHCN, self).__init__()
self.emb_size = emb_size
self.batch_size = batch_size
self.n_node = n_node
self.L2 = l2
self.lr = lr
self.layers = layers
self.beta = beta
self.dataset = dataset
values = adjacency.data
indices = np.vstack((adjacency.row, adjacency.col))
if dataset == 'Nowplaying':
index_fliter = (values < 0.05).nonzero()
values = np.delete(values, index_fliter)
indices1 = np.delete(indices[0], index_fliter)
indices2 = np.delete(indices[1], index_fliter)
indices = [indices1, indices2]
i = torch.LongTensor(indices)
v = torch.FloatTensor(values)
shape = adjacency.shape
adjacency = torch.sparse.FloatTensor(i, v, torch.Size(shape))
self.adjacency = adjacency
self.embedding = nn.Embedding(self.n_node, self.emb_size)
self.pos_embedding = nn.Embedding(200, self.emb_size)
self.HyperGraph = HyperConv(self.layers,dataset)
self.LineGraph = LineConv(self.layers, self.batch_size)
self.w_1 = nn.Linear(2 * self.emb_size, self.emb_size)
self.w_2 = nn.Parameter(torch.Tensor(self.emb_size, 1))
self.glu1 = nn.Linear(self.emb_size, self.emb_size)
self.glu2 = nn.Linear(self.emb_size, self.emb_size, bias=False)
self.loss_function = nn.CrossEntropyLoss()
self.optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
self.init_parameters()
def init_parameters(self):
stdv = 1.0 / math.sqrt(self.emb_size)
for weight in self.parameters():
weight.data.uniform_(-stdv, stdv)
def generate_sess_emb(self,item_embedding, session_item, session_len, reversed_sess_item, mask):
# zeros = torch.cuda.FloatTensor(1, self.emb_size).fill_(0)
zeros = torch.zeros([1,self.emb_size], device='cuda')
item_embedding = torch.cat([zeros, item_embedding], 0)
get = lambda i: item_embedding[reversed_sess_item[i]]
# seq_h = torch.cuda.FloatTensor(self.batch_size, list(reversed_sess_item.shape)[1], self.emb_size).fill_(0)
seq_h = torch.zeros([self.batch_size, list(reversed_sess_item.shape)[1], self.emb_size], device='cuda')
for i in torch.arange(session_item.shape[0]):
seq_h[i] = get(i)
hs = torch.div(torch.sum(seq_h, 1), session_len)
mask = mask.float().unsqueeze(-1)
len = seq_h.shape[1]
pos_emb = self.pos_embedding.weight[:len]
pos_emb = pos_emb.unsqueeze(0).repeat(self.batch_size, 1, 1)
hs = hs.unsqueeze(-2).repeat(1, len, 1)
nh = self.w_1(torch.cat([pos_emb, seq_h], -1))
nh = torch.tanh(nh)
nh = torch.sigmoid(self.glu1(nh) + self.glu2(hs))
beta = torch.matmul(nh, self.w_2)
beta = beta * mask
select = torch.sum(beta * seq_h, 1)
return select
def generate_sess_emb_npos(self,item_embedding, session_item, session_len, reversed_sess_item, mask):
# zeros = torch.cuda.FloatTensor(1, self.emb_size).fill_(0)
zeros = torch.zeros([1, self.emb_size], device='cuda')
item_embedding = torch.cat([zeros, item_embedding], 0)
get = lambda i: item_embedding[reversed_sess_item[i]]
# seq_h = torch.cuda.FloatTensor(self.batch_size, list(reversed_sess_item.shape)[1], self.emb_size).fill_(0)
seq_h = torch.zeros([self.batch_size, list(reversed_sess_item.shape)[1], self.emb_size], device='cuda')
for i in torch.arange(session_item.shape[0]):
seq_h[i] = get(i)
hs = torch.div(torch.sum(seq_h, 1), session_len)
mask = mask.float().unsqueeze(-1)
len = seq_h.shape[1]
# pos_emb = self.pos_embedding.weight[:len]
# pos_emb = pos_emb.unsqueeze(0).repeat(self.batch_size, 1, 1)
hs = hs.unsqueeze(-2).repeat(1, len, 1)
nh = seq_h
nh = torch.tanh(nh)
nh = torch.sigmoid(self.glu1(nh) + self.glu2(hs))
beta = torch.matmul(nh, self.w_2)
beta = beta * mask
select = torch.sum(beta * seq_h, 1)
return select
def SSL(self, sess_emb_hgnn, sess_emb_lgcn):
def row_shuffle(embedding):
corrupted_embedding = embedding[torch.randperm(embedding.size()[0])]
return corrupted_embedding
def row_column_shuffle(embedding):
corrupted_embedding = embedding[torch.randperm(embedding.size()[0])]
corrupted_embedding = corrupted_embedding[:,torch.randperm(corrupted_embedding.size()[1])]
return corrupted_embedding
def score(x1, x2):
return torch.sum(torch.mul(x1, x2), 1)
pos = score(sess_emb_hgnn, sess_emb_lgcn)
neg1 = score(sess_emb_lgcn, row_column_shuffle(sess_emb_hgnn))
# one = torch.cuda.FloatTensor(neg1.shape[0]).fill_(1)
one = zeros = torch.ones(neg1.shape[0], device='cuda')
con_loss = torch.sum(-torch.log(1e-8 + torch.sigmoid(pos))-torch.log(1e-8 + (one - torch.sigmoid(neg1))))
return con_loss
def forward(self, session_item, session_len, D, A, reversed_sess_item, mask):
item_embeddings_hg = self.HyperGraph(self.adjacency, self.embedding.weight)
if self.dataset == 'Tmall':
sess_emb_hgnn = self.generate_sess_emb_npos(item_embeddings_hg, session_item, session_len, reversed_sess_item, mask)
else:
sess_emb_hgnn = self.generate_sess_emb(item_embeddings_hg, session_item, session_len, reversed_sess_item, mask)
session_emb_lg = self.LineGraph(self.embedding.weight, D, A, session_item, session_len)
con_loss = self.SSL(sess_emb_hgnn, session_emb_lg)
return item_embeddings_hg, sess_emb_hgnn, self.beta*con_loss
@jit(nopython=True)
def find_k_largest(K, candidates):
n_candidates = []
for iid, score in enumerate(candidates[:K]):
n_candidates.append((score, iid))
heapq.heapify(n_candidates)
for iid, score in enumerate(candidates[K:]):
if score > n_candidates[0][0]:
heapq.heapreplace(n_candidates, (score, iid + K))
n_candidates.sort(key=lambda d: d[0], reverse=True)
ids = [item[1] for item in n_candidates]
# k_largest_scores = [item[0] for item in n_candidates]
return ids#, k_largest_scores
def forward(model, i, data):
tar, session_len, session_item, reversed_sess_item, mask = data.get_slice(i)
A_hat, D_hat = data.get_overlap(session_item)
session_item = trans_to_cuda(torch.Tensor(session_item).long())
session_len = trans_to_cuda(torch.Tensor(session_len).long())
A_hat = trans_to_cuda(torch.Tensor(A_hat))
D_hat = trans_to_cuda(torch.Tensor(D_hat))
tar = trans_to_cuda(torch.Tensor(tar).long())
mask = trans_to_cuda(torch.Tensor(mask).long())
reversed_sess_item = trans_to_cuda(torch.Tensor(reversed_sess_item).long())
item_emb_hg, sess_emb_hgnn, con_loss = model(session_item, session_len, D_hat, A_hat, reversed_sess_item, mask)
scores = torch.mm(sess_emb_hgnn, torch.transpose(item_emb_hg, 1,0))
return tar, scores, con_loss
def train_test(model, train_data, test_data):
print('start training: ', datetime.datetime.now())
torch.autograd.set_detect_anomaly(True)
total_loss = 0.0
slices = train_data.generate_batch(model.batch_size)
for i in tqdm(slices):
model.zero_grad()
targets, scores, con_loss = forward(model, i, train_data)
loss = model.loss_function(scores + 1e-8, targets)
loss = loss + con_loss
loss.backward()
# print(loss.item())
model.optimizer.step()
total_loss += loss
print('\tLoss:\t%.3f' % total_loss)
top_K = [5, 10, 20]
metrics = {}
for K in top_K:
metrics['hit%d' % K] = []
metrics['mrr%d' % K] = []
print('start predicting: ', datetime.datetime.now())
model.eval()
slices = test_data.generate_batch(model.batch_size)
for i in slices:
tar, scores, con_loss = forward(model, i, test_data)
scores = trans_to_cpu(scores).detach().numpy()
index = []
for idd in range(model.batch_size):
index.append(find_k_largest(20, scores[idd]))
index = np.array(index)
tar = trans_to_cpu(tar).detach().numpy()
for K in top_K:
for prediction, target in zip(index[:, :K], tar):
metrics['hit%d' %K].append(np.isin(target, prediction))
if len(np.where(prediction == target)[0]) == 0:
metrics['mrr%d' %K].append(0)
else:
metrics['mrr%d' %K].append(1 / (np.where(prediction == target)[0][0]+1))
return metrics, total_loss