-
Notifications
You must be signed in to change notification settings - Fork 101
/
face.m
225 lines (191 loc) · 6.46 KB
/
face.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
function varargout = face(varargin)
% FACE MATLAB code for face.fig
% FACE, by itself, creates a new FACE or raises the existing
% singleton*.
%
% H = FACE returns the handle to a new FACE or the handle to
% the existing singleton*.
%
% FACE('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in FACE.M with the given input arguments.
%
% FACE('Property','Value',...) creates a new FACE or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before face_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to face_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help face
% Last Modified by GUIDE v2.5 18-Dec-2014 12:02:18
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @face_OpeningFcn, ...
'gui_OutputFcn', @face_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before face is made visible.
function face_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to face (see VARARGIN)
% Choose default command line output for face
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes face wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = face_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% read image to be recognize
global im;
[filename, pathname] = uigetfile({'*.bmp'},'choose photo');
str = [pathname, filename];
im = imread(str);
axes( handles.axes1);
imshow(im);
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global im
global reference
global W
global imgmean
global col_of_data
global pathname
global img_path_list
% 预处理新数据
im = double(im(:));
objectone = W'*(im - imgmean);
distance = 100000000;
% 最小距离法,寻找和待识别图片最为接近的训练图片
for k = 1:col_of_data
temp = norm(objectone - reference(:,k));
if(distance>temp)
aimone = k;
distance = temp;
aimpath = strcat(pathname, '/', img_path_list(aimone).name);
axes( handles.axes2 )
imshow(aimpath)
end
end
% 显示测试结果
% aimpath = strcat(pathname, '/', img_path_list(aimone).name);
% axes( handles.axes2 )
% imshow(aimpath)
% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global reference
global W
global imgmean
global col_of_data
global pathname
global img_path_list
% 批量读取指定文件夹下的图片128*128
pathname = uigetdir;
img_path_list = dir(strcat(pathname,'\*.bmp'));
img_num = length(img_path_list);
imagedata = [];
if img_num >0
for j = 1:img_num
img_name = img_path_list(j).name;
temp = imread(strcat(pathname, '/', img_name));
temp = double(temp(:));
imagedata = [imagedata, temp];
end
end
col_of_data = size(imagedata,2);
% 中心化 & 计算协方差矩阵
imgmean = mean(imagedata,2);
for i = 1:col_of_data
imagedata(:,i) = imagedata(:,i) - imgmean;
end
covMat = imagedata'*imagedata;
[COEFF, latent, explained] = pcacov(covMat);
% 选择构成95%能量的特征值
i = 1;
proportion = 0;
while(proportion < 95)
proportion = proportion + explained(i);
i = i+1;
end
p = i - 1;
% 特征脸
W = imagedata*COEFF; % N*M阶
W = W(:,1:p); % N*p阶
% 训练样本在新座标基下的表达矩阵 p*M
reference = W'*imagedata;
% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% 选择测试集
global W
global reference
col_of_data = 60;
pathname = uigetdir;
img_path_list = dir(strcat(pathname,'\*.bmp'));
img_num = length(img_path_list);
testdata = [];
if img_num >0
for j = 1:img_num
img_name = img_path_list(j).name;
temp = imread(strcat(pathname, '/', img_name));
temp = double(temp(:));
testdata = [testdata, temp];
end
end
col_of_test = size(testdata,2);
testdata = center( testdata );
object = W'* testdata;
% 最小距离法,寻找和待识别图片最为接近的训练图片
% 计算分类器准确率
num = 0;
for j = 1:col_of_test;
distance = 1000000000000;
for k = 1:col_of_data;
temp = norm(object(:,j) - reference(:,k));
if(distance>temp)
aimone = k;
distance = temp;
end
end
if ceil(j/3)==ceil(aimone/4)
num = num + 1;
end
end
accuracy = num/col_of_test;
msgbox(['分类器准确率: ',num2str(accuracy)],'accuracy')