-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIndexed_Polynomials.thy
549 lines (470 loc) · 28.3 KB
/
Indexed_Polynomials.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
(* Title: HOL/Algebra/Indexed_Polynomials.thy
Author: Paulo Emílio de Vilhena
*)
theory Indexed_Polynomials
imports Weak_Morphisms "HOL-Library.Multiset" Polynomial_Divisibility
begin
section \<open>Indexed Polynomials\<close>
text \<open>In this theory, we build a basic framework to the study of polynomials on letters
indexed by a set. The main interest is to then apply these concepts to the construction
of the algebraic closure of a field. \<close>
subsection \<open>Definitions\<close>
text \<open>We formalize indexed monomials as multisets with its support a subset of the index set.
On top of those, we build indexed polynomials which are simply functions mapping a monomial
to its coefficient. \<close>
definition (in ring) indexed_const :: "'a \<Rightarrow> ('c multiset \<Rightarrow> 'a)"
where "indexed_const k = (\<lambda>m. if m = {#} then k else \<zero>)"
definition (in ring) indexed_pmult :: "('c multiset \<Rightarrow> 'a) \<Rightarrow> 'c \<Rightarrow> ('c multiset \<Rightarrow> 'a)" (infixl "\<Otimes>" 65)
where "indexed_pmult P i = (\<lambda>m. if i \<in># m then P (m - {# i #}) else \<zero>)"
definition (in ring) indexed_padd :: "_ \<Rightarrow> _ \<Rightarrow> ('c multiset \<Rightarrow> 'a)" (infixl "\<Oplus>" 65)
where "indexed_padd P Q = (\<lambda>m. (P m) \<oplus> (Q m))"
definition (in ring) indexed_var :: "'c \<Rightarrow> ('c multiset \<Rightarrow> 'a)" ("\<X>\<index>")
where "indexed_var i = (indexed_const \<one>) \<Otimes> i"
definition (in ring) index_free :: "('c multiset \<Rightarrow> 'a) \<Rightarrow> 'c \<Rightarrow> bool"
where "index_free P i \<longleftrightarrow> (\<forall>m. i \<in># m \<longrightarrow> P m = \<zero>)"
definition (in ring) carrier_coeff :: "('c multiset \<Rightarrow> 'a) \<Rightarrow> bool"
where "carrier_coeff P \<longleftrightarrow> (\<forall>m. P m \<in> carrier R)"
inductive_set (in ring) indexed_pset :: "'c set \<Rightarrow> 'a set \<Rightarrow> ('c multiset \<Rightarrow> 'a) set" ("_ [\<X>\<index>]" 80)
for I and K where
indexed_const: "k \<in> K \<Longrightarrow> indexed_const k \<in> (K[\<X>\<^bsub>I\<^esub>])"
| indexed_padd: "\<lbrakk> P \<in> (K[\<X>\<^bsub>I\<^esub>]); Q \<in> (K[\<X>\<^bsub>I\<^esub>]) \<rbrakk> \<Longrightarrow> P \<Oplus> Q \<in> (K[\<X>\<^bsub>I\<^esub>])"
| indexed_pmult: "\<lbrakk> P \<in> (K[\<X>\<^bsub>I\<^esub>]); i \<in> I \<rbrakk> \<Longrightarrow> P \<Otimes> i \<in> (K[\<X>\<^bsub>I\<^esub>])"
fun (in ring) indexed_eval_aux :: "('c multiset \<Rightarrow> 'a) list \<Rightarrow> 'c \<Rightarrow> ('c multiset \<Rightarrow> 'a)"
where "indexed_eval_aux Ps i = foldr (\<lambda>P Q. (Q \<Otimes> i) \<Oplus> P) Ps (indexed_const \<zero>)"
fun (in ring) indexed_eval :: "('c multiset \<Rightarrow> 'a) list \<Rightarrow> 'c \<Rightarrow> ('c multiset \<Rightarrow> 'a)"
where "indexed_eval Ps i = indexed_eval_aux (rev Ps) i"
subsection \<open>Basic Properties\<close>
lemma (in ring) carrier_coeffE:
assumes "carrier_coeff P" shows "P m \<in> carrier R"
using assms unfolding carrier_coeff_def by simp
lemma (in ring) indexed_zero_def: "indexed_const \<zero> = (\<lambda>_. \<zero>)"
unfolding indexed_const_def by simp
lemma (in ring) indexed_const_index_free: "index_free (indexed_const k) i"
unfolding index_free_def indexed_const_def by auto
lemma (in domain) indexed_var_not_index_free: "\<not> index_free \<X>\<^bsub>i\<^esub> i"
proof -
have "\<X>\<^bsub>i\<^esub> {# i #} = \<one>"
unfolding indexed_var_def indexed_pmult_def indexed_const_def by simp
thus ?thesis
using one_not_zero unfolding index_free_def by fastforce
qed
lemma (in ring) indexed_pmult_zero [simp]:
shows "indexed_pmult (indexed_const \<zero>) i = indexed_const \<zero>"
unfolding indexed_zero_def indexed_pmult_def by auto
lemma (in ring) indexed_padd_zero:
assumes "carrier_coeff P" shows "P \<Oplus> (indexed_const \<zero>) = P" and "(indexed_const \<zero>) \<Oplus> P = P"
using assms unfolding carrier_coeff_def indexed_zero_def indexed_padd_def by auto
lemma (in ring) indexed_padd_const:
shows "(indexed_const k1) \<Oplus> (indexed_const k2) = indexed_const (k1 \<oplus> k2)"
unfolding indexed_padd_def indexed_const_def by auto
lemma (in ring) indexed_const_in_carrier:
assumes "K \<subseteq> carrier R" and "k \<in> K" shows "\<And>m. (indexed_const k) m \<in> carrier R"
using assms unfolding indexed_const_def by auto
lemma (in ring) indexed_padd_in_carrier:
assumes "carrier_coeff P" and "carrier_coeff Q" shows "carrier_coeff (indexed_padd P Q)"
using assms unfolding carrier_coeff_def indexed_padd_def by simp
lemma (in ring) indexed_pmult_in_carrier:
assumes "carrier_coeff P" shows "carrier_coeff (P \<Otimes> i)"
using assms unfolding carrier_coeff_def indexed_pmult_def by simp
lemma (in ring) indexed_eval_aux_in_carrier:
assumes "list_all carrier_coeff Ps" shows "carrier_coeff (indexed_eval_aux Ps i)"
using assms unfolding carrier_coeff_def
by (induct Ps) (auto simp add: indexed_zero_def indexed_padd_def indexed_pmult_def)
lemma (in ring) indexed_eval_in_carrier:
assumes "list_all carrier_coeff Ps" shows "carrier_coeff (indexed_eval Ps i)"
using assms indexed_eval_aux_in_carrier[of "rev Ps"] by auto
lemma (in ring) indexed_pset_in_carrier:
assumes "K \<subseteq> carrier R" and "P \<in> (K[\<X>\<^bsub>I\<^esub>])" shows "carrier_coeff P"
using assms(2,1) indexed_const_in_carrier unfolding carrier_coeff_def
by (induction) (auto simp add: indexed_zero_def indexed_padd_def indexed_pmult_def)
subsection \<open>Indexed Eval\<close>
lemma (in ring) exists_indexed_eval_aux_monomial:
assumes "carrier_coeff P" and "list_all carrier_coeff Qs"
and "count n i = k" and "P n \<noteq> \<zero>" and "list_all (\<lambda>Q. index_free Q i) Qs"
obtains m where "count m i = length Qs + k" and "(indexed_eval_aux (Qs @ [ P ]) i) m \<noteq> \<zero>"
proof -
from assms(2,5) have "\<exists>m. count m i = length Qs + k \<and> (indexed_eval_aux (Qs @ [ P ]) i) m \<noteq> \<zero>"
proof (induct Qs)
case Nil thus ?case
using indexed_padd_zero(2)[OF assms(1)] assms(3-4) by auto
next
case (Cons Q Qs)
then obtain m where m: "count m i = length Qs + k" "(indexed_eval_aux (Qs @ [ P ]) i) m \<noteq> \<zero>"
by auto
define m' where "m' = m + {# i #}"
hence "Q m' = \<zero>"
using Cons(3) unfolding index_free_def by simp
moreover have "(indexed_eval_aux (Qs @ [ P ]) i) m \<in> carrier R"
using indexed_eval_aux_in_carrier[of "Qs @ [ P ]" i] Cons(2) assms(1) carrier_coeffE by auto
hence "((indexed_eval_aux (Qs @ [ P ]) i) \<Otimes> i) m' \<in> carrier R - { \<zero> }"
using m unfolding indexed_pmult_def m'_def by simp
ultimately have "(indexed_eval_aux (Q # (Qs @ [ P ])) i) m' \<noteq> \<zero>"
by (auto simp add: indexed_padd_def)
moreover from \<open>count m i = length Qs + k\<close> have "count m' i = length (Q # Qs) + k"
unfolding m'_def by simp
ultimately show ?case
by auto
qed
thus thesis
using that by blast
qed
lemma (in ring) indexed_eval_aux_monomial_degree_le:
assumes "list_all carrier_coeff Ps" and "list_all (\<lambda>P. index_free P i) Ps"
and "(indexed_eval_aux Ps i) m \<noteq> \<zero>" shows "count m i \<le> length Ps - 1"
using assms(1-3)
proof (induct Ps arbitrary: m, simp add: indexed_zero_def)
case (Cons P Ps) show ?case
proof (cases "count m i = 0", simp)
assume "count m i \<noteq> 0"
hence "P m = \<zero>"
using Cons(3) unfolding index_free_def by simp
moreover have "(indexed_eval_aux Ps i) m \<in> carrier R"
using carrier_coeffE[OF indexed_eval_aux_in_carrier[of Ps i]] Cons(2) by simp
ultimately have "((indexed_eval_aux Ps i) \<Otimes> i) m \<noteq> \<zero>"
using Cons(4) by (auto simp add: indexed_padd_def)
with \<open>count m i \<noteq> 0\<close> have "(indexed_eval_aux Ps i) (m - {# i #}) \<noteq> \<zero>"
unfolding indexed_pmult_def by (auto simp del: indexed_eval_aux.simps)
hence "count m i - 1 \<le> length Ps - 1"
using Cons(1)[of "m - {# i #}"] Cons(2-3) by auto
moreover from \<open>(indexed_eval_aux Ps i) (m - {# i #}) \<noteq> \<zero>\<close> have "length Ps > 0"
by (auto simp add: indexed_zero_def)
moreover from \<open>count m i \<noteq> 0\<close> have "count m i > 0"
by simp
ultimately show ?thesis
by (simp add: Suc_leI le_diff_iff)
qed
qed
lemma (in ring) indexed_eval_aux_is_inj:
assumes "list_all carrier_coeff Ps" and "list_all (\<lambda>P. index_free P i) Ps"
and "list_all carrier_coeff Qs" and "list_all (\<lambda>Q. index_free Q i) Qs"
and "indexed_eval_aux Ps i = indexed_eval_aux Qs i" and "length Ps = length Qs"
shows "Ps = Qs"
using assms
proof (induct Ps arbitrary: Qs, simp)
case (Cons P Ps)
from \<open>length (P # Ps) = length Qs\<close> obtain Q' Qs' where Qs: "Qs = Q' # Qs'" and "length Ps = length Qs'"
by (metis Suc_length_conv)
have in_carrier:
"((indexed_eval_aux Ps i) \<Otimes> i) m \<in> carrier R" "P m \<in> carrier R"
"((indexed_eval_aux Qs' i) \<Otimes> i) m \<in> carrier R" "Q' m \<in> carrier R" for m
using indexed_eval_aux_in_carrier[of Ps i]
indexed_eval_aux_in_carrier[of Qs' i] Cons(2,4) carrier_coeffE
unfolding Qs indexed_pmult_def by auto
have "(indexed_eval_aux (P # Ps) i) m = (indexed_eval_aux (Q' # Qs') i) m" for m
using Cons(6) unfolding Qs by simp
hence eq: "((indexed_eval_aux Ps i) \<Otimes> i) m \<oplus> P m = ((indexed_eval_aux Qs' i) \<Otimes> i) m \<oplus> Q' m" for m
by (simp add: indexed_padd_def)
have "P m = Q' m" if "i \<in># m" for m
using that Cons(3,5) unfolding index_free_def Qs by auto
moreover have "P m = Q' m" if "i \<notin># m" for m
using in_carrier(2,4) eq[of m] that by (auto simp add: indexed_pmult_def)
ultimately have "P = Q'"
by auto
hence "(indexed_eval_aux Ps i) m = (indexed_eval_aux Qs' i) m" for m
using eq[of "m + {# i #}"] in_carrier[of "m + {# i #}"] unfolding indexed_pmult_def by auto
with \<open>length Ps = length Qs'\<close> have "Ps = Qs'"
using Cons(1)[of Qs'] Cons(2-5) unfolding Qs by auto
with \<open>P = Q'\<close> show ?case
unfolding Qs by simp
qed
lemma (in ring) indexed_eval_aux_is_inj':
assumes "list_all carrier_coeff Ps" and "list_all (\<lambda>P. index_free P i) Ps"
and "list_all carrier_coeff Qs" and "list_all (\<lambda>Q. index_free Q i) Qs"
and "carrier_coeff P" and "index_free P i" "P \<noteq> indexed_const \<zero>"
and "carrier_coeff Q" and "index_free Q i" "Q \<noteq> indexed_const \<zero>"
and "indexed_eval_aux (Ps @ [ P ]) i = indexed_eval_aux (Qs @ [ Q ]) i"
shows "Ps = Qs" and "P = Q"
proof -
obtain m n where "P m \<noteq> \<zero>" and "Q n \<noteq> \<zero>"
using assms(7,10) unfolding indexed_zero_def by blast
hence "count m i = 0" and "count n i = 0"
using assms(6,9) unfolding index_free_def by (meson count_inI)+
with \<open>P m \<noteq> \<zero>\<close> and \<open>Q n \<noteq> \<zero>\<close> obtain m' n'
where m': "count m' i = length Ps" "(indexed_eval_aux (Ps @ [ P ]) i) m' \<noteq> \<zero>"
and n': "count n' i = length Qs" "(indexed_eval_aux (Qs @ [ Q ]) i) n' \<noteq> \<zero>"
using exists_indexed_eval_aux_monomial[of P Ps m i 0]
exists_indexed_eval_aux_monomial[of Q Qs n i 0] assms(1-5,8)
by (metis (no_types, lifting) add.right_neutral)
have "(indexed_eval_aux (Qs @ [ Q ]) i) m' \<noteq> \<zero>"
using m'(2) assms(11) by simp
with \<open>count m' i = length Ps\<close> have "length Ps \<le> length Qs"
using indexed_eval_aux_monomial_degree_le[of "Qs @ [ Q ]" i m'] assms(3-4,8-9) by auto
moreover have "(indexed_eval_aux (Ps @ [ P ]) i) n' \<noteq> \<zero>"
using n'(2) assms(11) by simp
with \<open>count n' i = length Qs\<close> have "length Qs \<le> length Ps"
using indexed_eval_aux_monomial_degree_le[of "Ps @ [ P ]" i n'] assms(1-2,5-6) by auto
ultimately have same_len: "length (Ps @ [ P ]) = length (Qs @ [ Q ])"
by simp
thus "Ps = Qs" and "P = Q"
using indexed_eval_aux_is_inj[of "Ps @ [ P ]" i "Qs @ [ Q ]"] assms(1-6,8-9,11) by auto
qed
lemma (in ring) exists_indexed_eval_monomial:
assumes "carrier_coeff P" and "list_all carrier_coeff Qs"
and "P n \<noteq> \<zero>" and "list_all (\<lambda>Q. index_free Q i) Qs"
obtains m where "count m i = length Qs + (count n i)" and "(indexed_eval (P # Qs) i) m \<noteq> \<zero>"
using exists_indexed_eval_aux_monomial[OF assms(1) _ _ assms(3), of "rev Qs"] assms(2,4) by auto
corollary (in ring) exists_indexed_eval_monomial':
assumes "carrier_coeff P" and "list_all carrier_coeff Qs"
and "P \<noteq> indexed_const \<zero>" and "list_all (\<lambda>Q. index_free Q i) Qs"
obtains m where "count m i \<ge> length Qs" and "(indexed_eval (P # Qs) i) m \<noteq> \<zero>"
proof -
from \<open>P \<noteq> indexed_const \<zero>\<close> obtain n where "P n \<noteq> \<zero>"
unfolding indexed_const_def by auto
then obtain m where "count m i = length Qs + (count n i)" and "(indexed_eval (P # Qs) i) m \<noteq> \<zero>"
using exists_indexed_eval_monomial[OF assms(1-2) _ assms(4)] by auto
thus thesis
using that by force
qed
lemma (in ring) indexed_eval_monomial_degree_le:
assumes "list_all carrier_coeff Ps" and "list_all (\<lambda>P. index_free P i) Ps"
and "(indexed_eval Ps i) m \<noteq> \<zero>" shows "count m i \<le> length Ps - 1"
using indexed_eval_aux_monomial_degree_le[of "rev Ps"] assms by auto
lemma (in ring) indexed_eval_is_inj:
assumes "list_all carrier_coeff Ps" and "list_all (\<lambda>P. index_free P i) Ps"
and "list_all carrier_coeff Qs" and "list_all (\<lambda>Q. index_free Q i) Qs"
and "carrier_coeff P" and "index_free P i" "P \<noteq> indexed_const \<zero>"
and "carrier_coeff Q" and "index_free Q i" "Q \<noteq> indexed_const \<zero>"
and "indexed_eval (P # Ps) i = indexed_eval (Q # Qs) i"
shows "Ps = Qs" and "P = Q"
proof -
have rev_cond:
"list_all carrier_coeff (rev Ps)" "list_all (\<lambda>P. index_free P i) (rev Ps)"
"list_all carrier_coeff (rev Qs)" "list_all (\<lambda>Q. index_free Q i) (rev Qs)"
using assms(1-4) by auto
show "Ps = Qs" and "P = Q"
using indexed_eval_aux_is_inj'[OF rev_cond assms(5-10)] assms(11) by auto
qed
lemma (in ring) indexed_eval_inj_on_carrier:
assumes "\<And>P. P \<in> carrier L \<Longrightarrow> carrier_coeff P" and "\<And>P. P \<in> carrier L \<Longrightarrow> index_free P i" and "\<zero>\<^bsub>L\<^esub> = indexed_const \<zero>"
shows "inj_on (\<lambda>Ps. indexed_eval Ps i) (carrier (poly_ring L))"
proof -
{ fix Ps
assume "Ps \<in> carrier (poly_ring L)" and "indexed_eval Ps i = indexed_const \<zero>"
have "Ps = []"
proof (rule ccontr)
assume "Ps \<noteq> []"
then obtain P' Ps' where Ps: "Ps = P' # Ps'"
using list.exhaust by blast
with \<open>Ps \<in> carrier (poly_ring L)\<close>
have "P' \<noteq> indexed_const \<zero>" and "list_all carrier_coeff Ps" and "list_all (\<lambda>P. index_free P i) Ps"
using assms unfolding sym[OF univ_poly_carrier[of L "carrier L"]] polynomial_def
by (simp add: list.pred_set subset_code(1))+
then obtain m where "(indexed_eval Ps i) m \<noteq> \<zero>"
using exists_indexed_eval_monomial'[of P' Ps'] unfolding Ps by auto
hence "indexed_eval Ps i \<noteq> indexed_const \<zero>"
unfolding indexed_const_def by auto
with \<open>indexed_eval Ps i = indexed_const \<zero>\<close> show False by simp
qed } note aux_lemma = this
show ?thesis
proof (rule inj_onI)
fix Ps Qs
assume "Ps \<in> carrier (poly_ring L)" and "Qs \<in> carrier (poly_ring L)"
show "indexed_eval Ps i = indexed_eval Qs i \<Longrightarrow> Ps = Qs"
proof (cases)
assume "Qs = []" and "indexed_eval Ps i = indexed_eval Qs i"
with \<open>Ps \<in> carrier (poly_ring L)\<close> show "Ps = Qs"
using aux_lemma by simp
next
assume "Qs \<noteq> []" and eq: "indexed_eval Ps i = indexed_eval Qs i"
with \<open>Qs \<in> carrier (poly_ring L)\<close> have "Ps \<noteq> []"
using aux_lemma by auto
from \<open>Ps \<noteq> []\<close> and \<open>Qs \<noteq> []\<close> obtain P' Ps' Q' Qs' where Ps: "Ps = P' # Ps'" and Qs: "Qs = Q' # Qs'"
using list.exhaust by metis
from \<open>Ps \<in> carrier (poly_ring L)\<close> and \<open>Ps = P' # Ps'\<close>
have "carrier_coeff P'" and "index_free P' i" "P' \<noteq> indexed_const \<zero>"
and "list_all carrier_coeff Ps'" and "list_all (\<lambda>P. index_free P i) Ps'"
using assms unfolding sym[OF univ_poly_carrier[of L "carrier L"]] polynomial_def
by (simp add: list.pred_set subset_code(1))+
moreover
from \<open>Qs \<in> carrier (poly_ring L)\<close> and \<open>Qs = Q' # Qs'\<close>
have "carrier_coeff Q'" and "index_free Q' i" "Q' \<noteq> indexed_const \<zero>"
and "list_all carrier_coeff Qs'" and "list_all (\<lambda>P. index_free P i) Qs'"
using assms unfolding sym[OF univ_poly_carrier[of L "carrier L"]] polynomial_def
by (simp add: list.pred_set subset_code(1))+
ultimately show ?thesis
using indexed_eval_is_inj[of Ps' i Qs' P' Q'] eq unfolding Ps Qs by auto
qed
qed
qed
subsection \<open>Link with Weak_Morphisms\<close>
text \<open>We study some elements of the contradiction needed in the algebraic closure existence proof. \<close>
context ring
begin
lemma (in ring) indexed_padd_index_free:
assumes "index_free P i" and "index_free Q i" shows "index_free (P \<Oplus> Q) i"
using assms unfolding indexed_padd_def index_free_def by auto
lemma (in ring) indexed_pmult_index_free:
assumes "index_free P j" and "i \<noteq> j" shows "index_free (P \<Otimes> i) j"
using assms unfolding index_free_def indexed_pmult_def
by (metis insert_DiffM insert_noteq_member)
lemma (in ring) indexed_eval_index_free:
assumes "list_all (\<lambda>P. index_free P j) Ps" and "i \<noteq> j" shows "index_free (indexed_eval Ps i) j"
proof -
{ fix Ps assume "list_all (\<lambda>P. index_free P j) Ps" hence "index_free (indexed_eval_aux Ps i) j"
using indexed_padd_index_free[OF indexed_pmult_index_free[OF _ assms(2)]]
by (induct Ps) (auto simp add: indexed_zero_def index_free_def) }
thus ?thesis
using assms(1) by auto
qed
context
fixes L :: "(('c multiset) \<Rightarrow> 'a) ring" and i :: 'c
assumes hyps:
\<comment> \<open>i\<close> "field L"
\<comment> \<open>ii\<close> "\<And>P. P \<in> carrier L \<Longrightarrow> carrier_coeff P"
\<comment> \<open>iii\<close> "\<And>P. P \<in> carrier L \<Longrightarrow> index_free P i"
\<comment> \<open>iv\<close> "\<zero>\<^bsub>L\<^esub> = indexed_const \<zero>"
begin
interpretation L: field L
using \<open>field L\<close> .
interpretation UP: principal_domain "poly_ring L"
using L.univ_poly_is_principal[OF L.carrier_is_subfield] .
abbreviation eval_pmod
where "eval_pmod q \<equiv> (\<lambda>p. indexed_eval (L.pmod p q) i)"
abbreviation image_poly
where "image_poly q \<equiv> image_ring (eval_pmod q) (poly_ring L)"
lemma indexed_eval_is_weak_ring_morphism:
assumes "q \<in> carrier (poly_ring L)" shows "weak_ring_morphism (eval_pmod q) (PIdl\<^bsub>poly_ring L\<^esub> q) (poly_ring L)"
proof (rule weak_ring_morphismI)
show "ideal (PIdl\<^bsub>poly_ring L\<^esub> q) (poly_ring L)"
using UP.cgenideal_ideal[OF assms] .
next
fix a b assume in_carrier: "a \<in> carrier (poly_ring L)" "b \<in> carrier (poly_ring L)"
note ldiv_closed = in_carrier[THEN L.long_division_closed(2)[OF L.carrier_is_subfield _ assms]]
have "(eval_pmod q) a = (eval_pmod q) b \<longleftrightarrow> L.pmod a q = L.pmod b q"
using inj_onD[OF indexed_eval_inj_on_carrier[OF hyps(2-4)] _ ldiv_closed] by fastforce
also have " ... \<longleftrightarrow> q pdivides\<^bsub>L\<^esub> (a \<ominus>\<^bsub>poly_ring L\<^esub> b)"
unfolding L.same_pmod_iff_pdivides[OF L.carrier_is_subfield in_carrier assms] ..
also have " ... \<longleftrightarrow> PIdl\<^bsub>poly_ring L\<^esub> (a \<ominus>\<^bsub>poly_ring L\<^esub> b) \<subseteq> PIdl\<^bsub>poly_ring L\<^esub> q"
unfolding UP.to_contain_is_to_divide[OF assms UP.minus_closed[OF in_carrier]] pdivides_def ..
also have " ... \<longleftrightarrow> a \<ominus>\<^bsub>poly_ring L\<^esub> b \<in> PIdl\<^bsub>poly_ring L\<^esub> q"
unfolding UP.cgenideal_eq_genideal[OF assms] UP.cgenideal_eq_genideal[OF UP.minus_closed[OF in_carrier]]
UP.Idl_subset_ideal'[OF UP.minus_closed[OF in_carrier] assms] ..
finally show "(eval_pmod q) a = (eval_pmod q) b \<longleftrightarrow> a \<ominus>\<^bsub>poly_ring L\<^esub> b \<in> PIdl\<^bsub>poly_ring L\<^esub> q" .
qed
lemma eval_norm_eq_id:
assumes "q \<in> carrier (poly_ring L)" and "degree q > 0" and "a \<in> carrier L"
shows "((eval_pmod q) \<circ> (ring.poly_of_const L)) a = a"
proof (cases)
assume "a = \<zero>\<^bsub>L\<^esub>" thus ?thesis
using L.long_division_zero(2)[OF L.carrier_is_subfield assms(1)] hyps(4)
unfolding ring.poly_of_const_def[OF L.ring_axioms] by auto
next
assume "a \<noteq> \<zero>\<^bsub>L\<^esub>" then have in_carrier: "[ a ] \<in> carrier (poly_ring L)"
using assms(3) unfolding sym[OF univ_poly_carrier[of L "carrier L"]] polynomial_def by simp
from \<open>a \<noteq> \<zero>\<^bsub>L\<^esub>\<close> show ?thesis
using L.pmod_const(2)[OF L.carrier_is_subfield in_carrier assms(1)] assms(2)
indexed_padd_zero(2)[OF hyps(2)[OF assms(3)]]
unfolding ring.poly_of_const_def[OF L.ring_axioms] by auto
qed
lemma image_poly_iso_incl:
assumes "q \<in> carrier (poly_ring L)" and "degree q > 0" shows "id \<in> ring_hom L (image_poly q)"
proof -
have "((eval_pmod q) \<circ> L.poly_of_const) \<in> ring_hom L (image_poly q)"
using ring_hom_trans[OF L.canonical_embedding_is_hom[OF L.carrier_is_subring]
UP.weak_ring_morphism_is_hom[OF indexed_eval_is_weak_ring_morphism[OF assms(1)]]]
by simp
thus ?thesis
using eval_norm_eq_id[OF assms(1-2)] L.ring_hom_restrict[of _ "image_poly q" id] by auto
qed
lemma image_poly_is_field:
assumes "q \<in> carrier (poly_ring L)" and "pirreducible\<^bsub>L\<^esub> (carrier L) q" shows "field (image_poly q)"
using UP.image_ring_is_field[OF indexed_eval_is_weak_ring_morphism[OF assms(1)]] assms(2)
unfolding sym[OF L.rupture_is_field_iff_pirreducible[OF L.carrier_is_subfield assms(1)]] rupture_def
by simp
lemma image_poly_index_free:
assumes "q \<in> carrier (poly_ring L)" and "P \<in> carrier (image_poly q)" and "\<not> index_free P j" "i \<noteq> j"
obtains Q where "Q \<in> carrier L" and "\<not> index_free Q j"
proof -
from \<open>P \<in> carrier (image_poly q)\<close> obtain p where p: "p \<in> carrier (poly_ring L)" and P: "P = (eval_pmod q) p"
unfolding image_ring_carrier by blast
from \<open>\<not> index_free P j\<close> have "\<not> list_all (\<lambda>P. index_free P j) (L.pmod p q)"
using indexed_eval_index_free[OF _ assms(4), of "L.pmod p q"] unfolding sym[OF P] by auto
then obtain Q where "Q \<in> set (L.pmod p q)" and "\<not> index_free Q j"
unfolding list_all_iff by auto
thus ?thesis
using L.long_division_closed(2)[OF L.carrier_is_subfield p assms(1)] that
unfolding sym[OF univ_poly_carrier[of L "carrier L"]] polynomial_def
by auto
qed
lemma eval_pmod_var:
assumes "indexed_const \<in> ring_hom R L" and "q \<in> carrier (poly_ring L)" and "degree q > 1"
shows "(eval_pmod q) X\<^bsub>L\<^esub> = \<X>\<^bsub>i\<^esub>" and "\<X>\<^bsub>i\<^esub> \<in> carrier (image_poly q)"
proof -
have "X\<^bsub>L\<^esub> = [ indexed_const \<one>, indexed_const \<zero> ]" and "X\<^bsub>L\<^esub> \<in> carrier (poly_ring L)"
using ring_hom_one[OF assms(1)] hyps(4) L.var_closed(1) L.carrier_is_subring unfolding var_def by auto
thus "(eval_pmod q) X\<^bsub>L\<^esub> = \<X>\<^bsub>i\<^esub>"
using L.pmod_const(2)[OF L.carrier_is_subfield _ assms(2), of "X\<^bsub>L\<^esub>"] assms(3)
by (auto simp add: indexed_pmult_def indexed_padd_def indexed_const_def indexed_var_def)
with \<open>X\<^bsub>L\<^esub> \<in> carrier (poly_ring L)\<close> show "\<X>\<^bsub>i\<^esub> \<in> carrier (image_poly q)"
using image_iff unfolding image_ring_carrier by fastforce
qed
lemma image_poly_eval_indexed_var:
assumes "indexed_const \<in> ring_hom R L"
and "q \<in> carrier (poly_ring L)" and "degree q > 1" and "pirreducible\<^bsub>L\<^esub> (carrier L) q"
shows "(ring.eval (image_poly q)) q \<X>\<^bsub>i\<^esub> = \<zero>\<^bsub>image_poly q\<^esub>"
proof -
let ?surj = "L.rupture_surj (carrier L) q"
let ?Rupt = "Rupt\<^bsub>L\<^esub> (carrier L) q"
let ?f = "eval_pmod q"
interpret UP: ring "poly_ring L"
using L.univ_poly_is_ring[OF L.carrier_is_subring] .
from \<open>pirreducible\<^bsub>L\<^esub> (carrier L) q\<close> interpret Rupt: field ?Rupt
using L.rupture_is_field_iff_pirreducible[OF L.carrier_is_subfield assms(2)] by simp
have weak_morphism: "weak_ring_morphism ?f (PIdl\<^bsub>poly_ring L\<^esub> q) (poly_ring L)"
using indexed_eval_is_weak_ring_morphism[OF assms(2)] .
then interpret I: ideal "PIdl\<^bsub>poly_ring L\<^esub> q" "poly_ring L"
using weak_ring_morphism.axioms(1) by auto
interpret Hom: ring_hom_ring ?Rupt "image_poly q" "\<lambda>x. the_elem (?f ` x)"
using ring_hom_ring.intro[OF I.quotient_is_ring UP.image_ring_is_ring[OF weak_morphism]]
UP.weak_ring_morphism_is_iso[OF weak_morphism]
unfolding ring_iso_def symmetric[OF ring_hom_ring_axioms_def] rupture_def
by auto
have "set q \<subseteq> carrier L" and lc: "q \<noteq> [] \<Longrightarrow> lead_coeff q \<in> carrier L - { \<zero>\<^bsub>L\<^esub> }"
using assms(2) unfolding sym[OF univ_poly_carrier] polynomial_def by auto
have map_surj: "set (map (?surj \<circ> L.poly_of_const) q) \<subseteq> carrier ?Rupt"
proof -
have "L.poly_of_const a \<in> carrier (poly_ring L)" if "a \<in> carrier L" for a
using that L.normalize_gives_polynomial[of "[ a ]"]
unfolding univ_poly_carrier ring.poly_of_const_def[OF L.ring_axioms] by simp
hence "(?surj \<circ> L.poly_of_const) a \<in> carrier ?Rupt" if "a \<in> carrier L" for a
using ring_hom_memE(1)[OF L.rupture_surj_hom(1)[OF L.carrier_is_subring assms(2)]] that by simp
with \<open>set q \<subseteq> carrier L\<close> show ?thesis
by (induct q) (auto)
qed
have "?surj X\<^bsub>L\<^esub> \<in> carrier ?Rupt"
using ring_hom_memE(1)[OF L.rupture_surj_hom(1)[OF _ assms(2)] L.var_closed(1)] L.carrier_is_subring by simp
moreover have "map (\<lambda>x. the_elem (?f ` x)) (map (?surj \<circ> L.poly_of_const) q) = q"
proof -
define g where "g = (?surj \<circ> L.poly_of_const)"
define f where "f = (\<lambda>x. the_elem (?f ` x))"
have "the_elem (?f ` ((?surj \<circ> L.poly_of_const) a)) = ((eval_pmod q) \<circ> L.poly_of_const) a"
if "a \<in> carrier L" for a
using that L.normalize_gives_polynomial[of "[ a ]"] UP.weak_ring_morphism_range[OF weak_morphism]
unfolding univ_poly_carrier ring.poly_of_const_def[OF L.ring_axioms] by auto
hence "the_elem (?f ` ((?surj \<circ> L.poly_of_const) a)) = a" if "a \<in> carrier L" for a
using eval_norm_eq_id[OF assms(2)] that assms(3) by simp
hence "f (g a) = a" if "a \<in> carrier L" for a
using that unfolding f_def g_def by simp
with \<open>set q \<subseteq> carrier L\<close> have "map f (map g q) = q"
by (induct q) (auto)
thus ?thesis
unfolding f_def g_def by simp
qed
moreover have "(\<lambda>x. the_elem (?f ` x)) (?surj X\<^bsub>L\<^esub>) = \<X>\<^bsub>i\<^esub>"
using UP.weak_ring_morphism_range[OF weak_morphism L.var_closed(1)[OF L.carrier_is_subring]]
unfolding eval_pmod_var(1)[OF assms(1-3)] by simp
ultimately have "Hom.S.eval q \<X>\<^bsub>i\<^esub> = (\<lambda>x. the_elem (?f ` x)) (Rupt.eval (map (?surj \<circ> L.poly_of_const) q) (?surj X\<^bsub>L\<^esub>))"
using Hom.eval_hom'[OF _ map_surj] by auto
moreover have "\<zero>\<^bsub>?Rupt\<^esub> = ?surj \<zero>\<^bsub>poly_ring L\<^esub>"
unfolding rupture_def FactRing_def by (simp add: I.a_rcos_const)
hence "the_elem (?f ` \<zero>\<^bsub>?Rupt\<^esub>) = \<zero>\<^bsub>image_poly q\<^esub>"
using UP.weak_ring_morphism_range[OF weak_morphism UP.zero_closed]
unfolding image_ring_zero by simp
hence "(\<lambda>x. the_elem (?f ` x)) (Rupt.eval (map (?surj \<circ> L.poly_of_const) q) (?surj X\<^bsub>L\<^esub>)) = \<zero>\<^bsub>image_poly q\<^esub>"
using L.polynomial_rupture[OF L.carrier_is_subring assms(2)] by simp
ultimately show ?thesis
by simp
qed
end (* of fixed L context. *)
end (* of ring context. *)
end