-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRing.thy
914 lines (751 loc) · 36.8 KB
/
Ring.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
(* Title: HOL/Algebra/Ring.thy
Author: Clemens Ballarin, started 9 December 1996
With contributions by Martin Baillon.
*)
theory Ring
imports FiniteProduct
begin
section \<open>The Algebraic Hierarchy of Rings\<close>
subsection \<open>Abelian Groups\<close>
record 'a ring = "'a monoid" +
zero :: 'a ("\<zero>\<index>")
add :: "['a, 'a] \<Rightarrow> 'a" (infixl "\<oplus>\<index>" 65)
abbreviation
add_monoid :: "('a, 'm) ring_scheme \<Rightarrow> ('a, 'm) monoid_scheme"
where "add_monoid R \<equiv> \<lparr> carrier = carrier R, mult = add R, one = zero R, \<dots> = (undefined :: 'm) \<rparr>"
text \<open>Derived operations.\<close>
definition
a_inv :: "[('a, 'm) ring_scheme, 'a ] \<Rightarrow> 'a" ("\<ominus>\<index> _" [81] 80)
where "a_inv R = m_inv (add_monoid R)"
definition
a_minus :: "[('a, 'm) ring_scheme, 'a, 'a] => 'a" ("(_ \<ominus>\<index> _)" [65,66] 65)
where "x \<ominus>\<^bsub>R\<^esub> y = x \<oplus>\<^bsub>R\<^esub> (\<ominus>\<^bsub>R\<^esub> y)"
definition
add_pow :: "[_, ('b :: semiring_1), 'a] \<Rightarrow> 'a" ("[_] \<cdot>\<index> _" [81, 81] 80)
where "add_pow R k a = pow (add_monoid R) a k"
locale abelian_monoid =
fixes G (structure)
assumes a_comm_monoid:
"comm_monoid (add_monoid G)"
definition
finsum :: "[('b, 'm) ring_scheme, 'a \<Rightarrow> 'b, 'a set] \<Rightarrow> 'b" where
"finsum G = finprod (add_monoid G)"
syntax
"_finsum" :: "index \<Rightarrow> idt \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"
("(3\<Oplus>__\<in>_. _)" [1000, 0, 51, 10] 10)
translations
"\<Oplus>\<^bsub>G\<^esub>i\<in>A. b" \<rightleftharpoons> "CONST finsum G (\<lambda>i. b) A"
\<comment> \<open>Beware of argument permutation!\<close>
locale abelian_group = abelian_monoid +
assumes a_comm_group:
"comm_group (add_monoid G)"
subsection \<open>Basic Properties\<close>
lemma abelian_monoidI:
fixes R (structure)
assumes "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<oplus> y \<in> carrier R"
and "\<zero> \<in> carrier R"
and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<oplus> z = x \<oplus> (y \<oplus> z)"
and "\<And>x. x \<in> carrier R \<Longrightarrow> \<zero> \<oplus> x = x"
and "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<oplus> y = y \<oplus> x"
shows "abelian_monoid R"
by (auto intro!: abelian_monoid.intro comm_monoidI intro: assms)
lemma abelian_monoidE:
fixes R (structure)
assumes "abelian_monoid R"
shows "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<oplus> y \<in> carrier R"
and "\<zero> \<in> carrier R"
and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<oplus> z = x \<oplus> (y \<oplus> z)"
and "\<And>x. x \<in> carrier R \<Longrightarrow> \<zero> \<oplus> x = x"
and "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<oplus> y = y \<oplus> x"
using assms unfolding abelian_monoid_def comm_monoid_def comm_monoid_axioms_def monoid_def by auto
lemma abelian_groupI:
fixes R (structure)
assumes "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<oplus> y \<in> carrier R"
and "\<zero> \<in> carrier R"
and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<oplus> z = x \<oplus> (y \<oplus> z)"
and "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<oplus> y = y \<oplus> x"
and "\<And>x. x \<in> carrier R \<Longrightarrow> \<zero> \<oplus> x = x"
and "\<And>x. x \<in> carrier R \<Longrightarrow> \<exists>y \<in> carrier R. y \<oplus> x = \<zero>"
shows "abelian_group R"
by (auto intro!: abelian_group.intro abelian_monoidI
abelian_group_axioms.intro comm_monoidI comm_groupI
intro: assms)
lemma abelian_groupE:
fixes R (structure)
assumes "abelian_group R"
shows "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<oplus> y \<in> carrier R"
and "\<zero> \<in> carrier R"
and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<oplus> z = x \<oplus> (y \<oplus> z)"
and "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<oplus> y = y \<oplus> x"
and "\<And>x. x \<in> carrier R \<Longrightarrow> \<zero> \<oplus> x = x"
and "\<And>x. x \<in> carrier R \<Longrightarrow> \<exists>y \<in> carrier R. y \<oplus> x = \<zero>"
using abelian_group.a_comm_group assms comm_groupE by fastforce+
lemma (in abelian_monoid) a_monoid:
"monoid (add_monoid G)"
by (rule comm_monoid.axioms, rule a_comm_monoid)
lemma (in abelian_group) a_group:
"group (add_monoid G)"
by (simp add: group_def a_monoid)
(simp add: comm_group.axioms group.axioms a_comm_group)
lemmas monoid_record_simps = partial_object.simps monoid.simps
text \<open>Transfer facts from multiplicative structures via interpretation.\<close>
sublocale abelian_monoid <
add: monoid "(add_monoid G)"
rewrites "carrier (add_monoid G) = carrier G"
and "mult (add_monoid G) = add G"
and "one (add_monoid G) = zero G"
and "(\<lambda>a k. pow (add_monoid G) a k) = (\<lambda>a k. add_pow G k a)"
by (rule a_monoid) (auto simp add: add_pow_def)
context abelian_monoid
begin
lemmas a_closed = add.m_closed
lemmas zero_closed = add.one_closed
lemmas a_assoc = add.m_assoc
lemmas l_zero = add.l_one
lemmas r_zero = add.r_one
lemmas minus_unique = add.inv_unique
end
sublocale abelian_monoid <
add: comm_monoid "(add_monoid G)"
rewrites "carrier (add_monoid G) = carrier G"
and "mult (add_monoid G) = add G"
and "one (add_monoid G) = zero G"
and "finprod (add_monoid G) = finsum G"
and "pow (add_monoid G) = (\<lambda>a k. add_pow G k a)"
by (rule a_comm_monoid) (auto simp: finsum_def add_pow_def)
context abelian_monoid begin
lemmas a_comm = add.m_comm
lemmas a_lcomm = add.m_lcomm
lemmas a_ac = a_assoc a_comm a_lcomm
lemmas finsum_empty = add.finprod_empty
lemmas finsum_insert = add.finprod_insert
lemmas finsum_zero = add.finprod_one
lemmas finsum_closed = add.finprod_closed
lemmas finsum_Un_Int = add.finprod_Un_Int
lemmas finsum_Un_disjoint = add.finprod_Un_disjoint
lemmas finsum_addf = add.finprod_multf
lemmas finsum_cong' = add.finprod_cong'
lemmas finsum_0 = add.finprod_0
lemmas finsum_Suc = add.finprod_Suc
lemmas finsum_Suc2 = add.finprod_Suc2
lemmas finsum_infinite = add.finprod_infinite
lemmas finsum_cong = add.finprod_cong
text \<open>Usually, if this rule causes a failed congruence proof error,
the reason is that the premise \<open>g \<in> B \<rightarrow> carrier G\<close> cannot be shown.
Adding @{thm [source] Pi_def} to the simpset is often useful.\<close>
lemmas finsum_reindex = add.finprod_reindex
(* The following would be wrong. Needed is the equivalent of [^] for addition,
or indeed the canonical embedding from Nat into the monoid.
lemma finsum_const:
assumes fin [simp]: "finite A"
and a [simp]: "a : carrier G"
shows "finsum G (%x. a) A = a [^] card A"
using fin apply induct
apply force
apply (subst finsum_insert)
apply auto
apply (force simp add: Pi_def)
apply (subst m_comm)
apply auto
done
*)
lemmas finsum_singleton = add.finprod_singleton
end
sublocale abelian_group <
add: group "(add_monoid G)"
rewrites "carrier (add_monoid G) = carrier G"
and "mult (add_monoid G) = add G"
and "one (add_monoid G) = zero G"
and "m_inv (add_monoid G) = a_inv G"
and "pow (add_monoid G) = (\<lambda>a k. add_pow G k a)"
by (rule a_group) (auto simp: m_inv_def a_inv_def add_pow_def)
context abelian_group
begin
lemmas a_inv_closed = add.inv_closed
lemma minus_closed [intro, simp]:
"[| x \<in> carrier G; y \<in> carrier G |] ==> x \<ominus> y \<in> carrier G"
by (simp add: a_minus_def)
lemmas l_neg = add.l_inv [simp del]
lemmas r_neg = add.r_inv [simp del]
lemmas minus_minus = add.inv_inv
lemmas a_inv_inj = add.inv_inj
lemmas minus_equality = add.inv_equality
end
sublocale abelian_group <
add: comm_group "(add_monoid G)"
rewrites "carrier (add_monoid G) = carrier G"
and "mult (add_monoid G) = add G"
and "one (add_monoid G) = zero G"
and "m_inv (add_monoid G) = a_inv G"
and "finprod (add_monoid G) = finsum G"
and "pow (add_monoid G) = (\<lambda>a k. add_pow G k a)"
by (rule a_comm_group) (auto simp: m_inv_def a_inv_def finsum_def add_pow_def)
lemmas (in abelian_group) minus_add = add.inv_mult
text \<open>Derive an \<open>abelian_group\<close> from a \<open>comm_group\<close>\<close>
lemma comm_group_abelian_groupI:
fixes G (structure)
assumes cg: "comm_group (add_monoid G)"
shows "abelian_group G"
proof -
interpret comm_group "(add_monoid G)"
by (rule cg)
show "abelian_group G" ..
qed
subsection \<open>Rings: Basic Definitions\<close>
locale semiring = abelian_monoid (* for add *) R + monoid (* for mult *) R for R (structure) +
assumes l_distr: "\<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<otimes> z = x \<otimes> z \<oplus> y \<otimes> z"
and r_distr: "\<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> z \<otimes> (x \<oplus> y) = z \<otimes> x \<oplus> z \<otimes> y"
and l_null[simp]: "x \<in> carrier R \<Longrightarrow> \<zero> \<otimes> x = \<zero>"
and r_null[simp]: "x \<in> carrier R \<Longrightarrow> x \<otimes> \<zero> = \<zero>"
locale ring = abelian_group (* for add *) R + monoid (* for mult *) R for R (structure) +
assumes "\<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<otimes> z = x \<otimes> z \<oplus> y \<otimes> z"
and "\<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> z \<otimes> (x \<oplus> y) = z \<otimes> x \<oplus> z \<otimes> y"
locale cring = ring + comm_monoid (* for mult *) R
locale "domain" = cring +
assumes one_not_zero [simp]: "\<one> \<noteq> \<zero>"
and integral: "\<lbrakk> a \<otimes> b = \<zero>; a \<in> carrier R; b \<in> carrier R \<rbrakk> \<Longrightarrow> a = \<zero> \<or> b = \<zero>"
locale field = "domain" +
assumes field_Units: "Units R = carrier R - {\<zero>}"
subsection \<open>Rings\<close>
lemma ringI:
fixes R (structure)
assumes "abelian_group R"
and "monoid R"
and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<otimes> z = x \<otimes> z \<oplus> y \<otimes> z"
and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> z \<otimes> (x \<oplus> y) = z \<otimes> x \<oplus> z \<otimes> y"
shows "ring R"
by (auto intro: ring.intro
abelian_group.axioms ring_axioms.intro assms)
lemma ringE:
fixes R (structure)
assumes "ring R"
shows "abelian_group R"
and "monoid R"
and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<otimes> z = x \<otimes> z \<oplus> y \<otimes> z"
and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> z \<otimes> (x \<oplus> y) = z \<otimes> x \<oplus> z \<otimes> y"
using assms unfolding ring_def ring_axioms_def by auto
context ring begin
lemma is_abelian_group: "abelian_group R" ..
lemma is_monoid: "monoid R"
by (auto intro!: monoidI m_assoc)
end
thm monoid_record_simps
lemmas ring_record_simps = monoid_record_simps ring.simps
lemma cringI:
fixes R (structure)
assumes abelian_group: "abelian_group R"
and comm_monoid: "comm_monoid R"
and l_distr: "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow>
(x \<oplus> y) \<otimes> z = x \<otimes> z \<oplus> y \<otimes> z"
shows "cring R"
proof (intro cring.intro ring.intro)
show "ring_axioms R"
\<comment> \<open>Right-distributivity follows from left-distributivity and
commutativity.\<close>
proof (rule ring_axioms.intro)
fix x y z
assume R: "x \<in> carrier R" "y \<in> carrier R" "z \<in> carrier R"
note [simp] = comm_monoid.axioms [OF comm_monoid]
abelian_group.axioms [OF abelian_group]
abelian_monoid.a_closed
from R have "z \<otimes> (x \<oplus> y) = (x \<oplus> y) \<otimes> z"
by (simp add: comm_monoid.m_comm [OF comm_monoid.intro])
also from R have "... = x \<otimes> z \<oplus> y \<otimes> z" by (simp add: l_distr)
also from R have "... = z \<otimes> x \<oplus> z \<otimes> y"
by (simp add: comm_monoid.m_comm [OF comm_monoid.intro])
finally show "z \<otimes> (x \<oplus> y) = z \<otimes> x \<oplus> z \<otimes> y" .
qed (rule l_distr)
qed (auto intro: cring.intro
abelian_group.axioms comm_monoid.axioms ring_axioms.intro assms)
lemma cringE:
fixes R (structure)
assumes "cring R"
shows "comm_monoid R"
and "\<And>x y z. \<lbrakk> x \<in> carrier R; y \<in> carrier R; z \<in> carrier R \<rbrakk> \<Longrightarrow> (x \<oplus> y) \<otimes> z = x \<otimes> z \<oplus> y \<otimes> z"
using assms cring_def apply auto by (simp add: assms cring.axioms(1) ringE(3))
lemma (in cring) is_cring:
"cring R" by (rule cring_axioms)
lemma (in ring) minus_zero [simp]: "\<ominus> \<zero> = \<zero>"
by (simp add: a_inv_def)
subsubsection \<open>Normaliser for Rings\<close>
lemma (in abelian_group) r_neg1:
"\<lbrakk> x \<in> carrier G; y \<in> carrier G \<rbrakk> \<Longrightarrow> (\<ominus> x) \<oplus> (x \<oplus> y) = y"
proof -
assume G: "x \<in> carrier G" "y \<in> carrier G"
then have "(\<ominus> x \<oplus> x) \<oplus> y = y"
by (simp only: l_neg l_zero)
with G show ?thesis by (simp add: a_ac)
qed
lemma (in abelian_group) r_neg2:
"\<lbrakk> x \<in> carrier G; y \<in> carrier G \<rbrakk> \<Longrightarrow> x \<oplus> ((\<ominus> x) \<oplus> y) = y"
proof -
assume G: "x \<in> carrier G" "y \<in> carrier G"
then have "(x \<oplus> \<ominus> x) \<oplus> y = y"
by (simp only: r_neg l_zero)
with G show ?thesis
by (simp add: a_ac)
qed
context ring begin
text \<open>
The following proofs are from Jacobson, Basic Algebra I, pp.~88--89.
\<close>
sublocale semiring
proof -
note [simp] = ring_axioms[unfolded ring_def ring_axioms_def]
show "semiring R"
proof (unfold_locales)
fix x
assume R: "x \<in> carrier R"
then have "\<zero> \<otimes> x \<oplus> \<zero> \<otimes> x = (\<zero> \<oplus> \<zero>) \<otimes> x"
by (simp del: l_zero r_zero)
also from R have "... = \<zero> \<otimes> x \<oplus> \<zero>" by simp
finally have "\<zero> \<otimes> x \<oplus> \<zero> \<otimes> x = \<zero> \<otimes> x \<oplus> \<zero>" .
with R show "\<zero> \<otimes> x = \<zero>" by (simp del: r_zero)
from R have "x \<otimes> \<zero> \<oplus> x \<otimes> \<zero> = x \<otimes> (\<zero> \<oplus> \<zero>)"
by (simp del: l_zero r_zero)
also from R have "... = x \<otimes> \<zero> \<oplus> \<zero>" by simp
finally have "x \<otimes> \<zero> \<oplus> x \<otimes> \<zero> = x \<otimes> \<zero> \<oplus> \<zero>" .
with R show "x \<otimes> \<zero> = \<zero>" by (simp del: r_zero)
qed auto
qed
lemma l_minus:
"\<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> (\<ominus> x) \<otimes> y = \<ominus> (x \<otimes> y)"
proof -
assume R: "x \<in> carrier R" "y \<in> carrier R"
then have "(\<ominus> x) \<otimes> y \<oplus> x \<otimes> y = (\<ominus> x \<oplus> x) \<otimes> y" by (simp add: l_distr)
also from R have "... = \<zero>" by (simp add: l_neg)
finally have "(\<ominus> x) \<otimes> y \<oplus> x \<otimes> y = \<zero>" .
with R have "(\<ominus> x) \<otimes> y \<oplus> x \<otimes> y \<oplus> \<ominus> (x \<otimes> y) = \<zero> \<oplus> \<ominus> (x \<otimes> y)" by simp
with R show ?thesis by (simp add: a_assoc r_neg)
qed
lemma r_minus:
"\<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> x \<otimes> (\<ominus> y) = \<ominus> (x \<otimes> y)"
proof -
assume R: "x \<in> carrier R" "y \<in> carrier R"
then have "x \<otimes> (\<ominus> y) \<oplus> x \<otimes> y = x \<otimes> (\<ominus> y \<oplus> y)" by (simp add: r_distr)
also from R have "... = \<zero>" by (simp add: l_neg)
finally have "x \<otimes> (\<ominus> y) \<oplus> x \<otimes> y = \<zero>" .
with R have "x \<otimes> (\<ominus> y) \<oplus> x \<otimes> y \<oplus> \<ominus> (x \<otimes> y) = \<zero> \<oplus> \<ominus> (x \<otimes> y)" by simp
with R show ?thesis by (simp add: a_assoc r_neg )
qed
end
lemma (in abelian_group) minus_eq: "x \<ominus> y = x \<oplus> (\<ominus> y)"
by (rule a_minus_def)
text \<open>Setup algebra method:
compute distributive normal form in locale contexts\<close>
ML_file "ringsimp.ML"
attribute_setup algebra = \<open>
Scan.lift ((Args.add >> K true || Args.del >> K false) --| Args.colon || Scan.succeed true)
-- Scan.lift Args.name -- Scan.repeat Args.term
>> (fn ((b, n), ts) => if b then Ringsimp.add_struct (n, ts) else Ringsimp.del_struct (n, ts))
\<close> "theorems controlling algebra method"
method_setup algebra = \<open>
Scan.succeed (SIMPLE_METHOD' o Ringsimp.algebra_tac)
\<close> "normalisation of algebraic structure"
lemmas (in semiring) semiring_simprules
[algebra ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"] =
a_closed zero_closed m_closed one_closed
a_assoc l_zero a_comm m_assoc l_one l_distr r_zero
a_lcomm r_distr l_null r_null
lemmas (in ring) ring_simprules
[algebra ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"] =
a_closed zero_closed a_inv_closed minus_closed m_closed one_closed
a_assoc l_zero l_neg a_comm m_assoc l_one l_distr minus_eq
r_zero r_neg r_neg2 r_neg1 minus_add minus_minus minus_zero
a_lcomm r_distr l_null r_null l_minus r_minus
lemmas (in cring)
[algebra del: ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"] =
_
lemmas (in cring) cring_simprules
[algebra add: cring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"] =
a_closed zero_closed a_inv_closed minus_closed m_closed one_closed
a_assoc l_zero l_neg a_comm m_assoc l_one l_distr m_comm minus_eq
r_zero r_neg r_neg2 r_neg1 minus_add minus_minus minus_zero
a_lcomm m_lcomm r_distr l_null r_null l_minus r_minus
lemma (in semiring) nat_pow_zero:
"(n::nat) \<noteq> 0 \<Longrightarrow> \<zero> [^] n = \<zero>"
by (induct n) simp_all
context semiring begin
lemma one_zeroD:
assumes onezero: "\<one> = \<zero>"
shows "carrier R = {\<zero>}"
proof (rule, rule)
fix x
assume xcarr: "x \<in> carrier R"
from xcarr have "x = x \<otimes> \<one>" by simp
with onezero have "x = x \<otimes> \<zero>" by simp
with xcarr have "x = \<zero>" by simp
then show "x \<in> {\<zero>}" by fast
qed fast
lemma one_zeroI:
assumes carrzero: "carrier R = {\<zero>}"
shows "\<one> = \<zero>"
proof -
from one_closed and carrzero
show "\<one> = \<zero>" by simp
qed
lemma carrier_one_zero: "(carrier R = {\<zero>}) = (\<one> = \<zero>)"
apply rule
apply (erule one_zeroI)
apply (erule one_zeroD)
done
lemma carrier_one_not_zero: "(carrier R \<noteq> {\<zero>}) = (\<one> \<noteq> \<zero>)"
by (simp add: carrier_one_zero)
end
text \<open>Two examples for use of method algebra\<close>
lemma
fixes R (structure) and S (structure)
assumes "ring R" "cring S"
assumes RS: "a \<in> carrier R" "b \<in> carrier R" "c \<in> carrier S" "d \<in> carrier S"
shows "a \<oplus> (\<ominus> (a \<oplus> (\<ominus> b))) = b \<and> c \<otimes>\<^bsub>S\<^esub> d = d \<otimes>\<^bsub>S\<^esub> c"
proof -
interpret ring R by fact
interpret cring S by fact
from RS show ?thesis by algebra
qed
lemma
fixes R (structure)
assumes "ring R"
assumes R: "a \<in> carrier R" "b \<in> carrier R"
shows "a \<ominus> (a \<ominus> b) = b"
proof -
interpret ring R by fact
from R show ?thesis by algebra
qed
subsubsection \<open>Sums over Finite Sets\<close>
lemma (in semiring) finsum_ldistr:
"\<lbrakk> finite A; a \<in> carrier R; f: A \<rightarrow> carrier R \<rbrakk> \<Longrightarrow>
(\<Oplus> i \<in> A. (f i)) \<otimes> a = (\<Oplus> i \<in> A. ((f i) \<otimes> a))"
proof (induct set: finite)
case empty then show ?case by simp
next
case (insert x F) then show ?case by (simp add: Pi_def l_distr)
qed
lemma (in semiring) finsum_rdistr:
"\<lbrakk> finite A; a \<in> carrier R; f: A \<rightarrow> carrier R \<rbrakk> \<Longrightarrow>
a \<otimes> (\<Oplus> i \<in> A. (f i)) = (\<Oplus> i \<in> A. (a \<otimes> (f i)))"
proof (induct set: finite)
case empty then show ?case by simp
next
case (insert x F) then show ?case by (simp add: Pi_def r_distr)
qed
(* ************************************************************************** *)
(* Contributed by Paulo E. de Vilhena. *)
text \<open>A quick detour\<close>
lemma add_pow_int_ge: "(k :: int) \<ge> 0 \<Longrightarrow> [ k ] \<cdot>\<^bsub>R\<^esub> a = [ nat k ] \<cdot>\<^bsub>R\<^esub> a"
by (simp add: add_pow_def int_pow_def nat_pow_def)
lemma add_pow_int_lt: "(k :: int) < 0 \<Longrightarrow> [ k ] \<cdot>\<^bsub>R\<^esub> a = \<ominus>\<^bsub>R\<^esub> ([ nat (- k) ] \<cdot>\<^bsub>R\<^esub> a)"
by (simp add: int_pow_def nat_pow_def a_inv_def add_pow_def)
corollary (in semiring) add_pow_ldistr:
assumes "a \<in> carrier R" "b \<in> carrier R"
shows "([(k :: nat)] \<cdot> a) \<otimes> b = [k] \<cdot> (a \<otimes> b)"
proof -
have "([k] \<cdot> a) \<otimes> b = (\<Oplus> i \<in> {..< k}. a) \<otimes> b"
using add.finprod_const[OF assms(1), of "{..<k}"] by simp
also have " ... = (\<Oplus> i \<in> {..< k}. (a \<otimes> b))"
using finsum_ldistr[of "{..<k}" b "\<lambda>x. a"] assms by simp
also have " ... = [k] \<cdot> (a \<otimes> b)"
using add.finprod_const[of "a \<otimes> b" "{..<k}"] assms by simp
finally show ?thesis .
qed
corollary (in semiring) add_pow_rdistr:
assumes "a \<in> carrier R" "b \<in> carrier R"
shows "a \<otimes> ([(k :: nat)] \<cdot> b) = [k] \<cdot> (a \<otimes> b)"
proof -
have "a \<otimes> ([k] \<cdot> b) = a \<otimes> (\<Oplus> i \<in> {..< k}. b)"
using add.finprod_const[OF assms(2), of "{..<k}"] by simp
also have " ... = (\<Oplus> i \<in> {..< k}. (a \<otimes> b))"
using finsum_rdistr[of "{..<k}" a "\<lambda>x. b"] assms by simp
also have " ... = [k] \<cdot> (a \<otimes> b)"
using add.finprod_const[of "a \<otimes> b" "{..<k}"] assms by simp
finally show ?thesis .
qed
(* For integers, we need the uniqueness of the additive inverse *)
lemma (in ring) add_pow_ldistr_int:
assumes "a \<in> carrier R" "b \<in> carrier R"
shows "([(k :: int)] \<cdot> a) \<otimes> b = [k] \<cdot> (a \<otimes> b)"
proof (cases "k \<ge> 0")
case True thus ?thesis
using add_pow_int_ge[of k R] add_pow_ldistr[OF assms] by auto
next
case False thus ?thesis
using add_pow_int_lt[of k R a] add_pow_int_lt[of k R "a \<otimes> b"]
add_pow_ldistr[OF assms, of "nat (- k)"] assms l_minus by auto
qed
lemma (in ring) add_pow_rdistr_int:
assumes "a \<in> carrier R" "b \<in> carrier R"
shows "a \<otimes> ([(k :: int)] \<cdot> b) = [k] \<cdot> (a \<otimes> b)"
proof (cases "k \<ge> 0")
case True thus ?thesis
using add_pow_int_ge[of k R] add_pow_rdistr[OF assms] by auto
next
case False thus ?thesis
using add_pow_int_lt[of k R b] add_pow_int_lt[of k R "a \<otimes> b"]
add_pow_rdistr[OF assms, of "nat (- k)"] assms r_minus by auto
qed
subsection \<open>Integral Domains\<close>
context "domain" begin
lemma zero_not_one [simp]: "\<zero> \<noteq> \<one>"
by (rule not_sym) simp
lemma integral_iff: (* not by default a simp rule! *)
"\<lbrakk> a \<in> carrier R; b \<in> carrier R \<rbrakk> \<Longrightarrow> (a \<otimes> b = \<zero>) = (a = \<zero> \<or> b = \<zero>)"
proof
assume "a \<in> carrier R" "b \<in> carrier R" "a \<otimes> b = \<zero>"
then show "a = \<zero> \<or> b = \<zero>" by (simp add: integral)
next
assume "a \<in> carrier R" "b \<in> carrier R" "a = \<zero> \<or> b = \<zero>"
then show "a \<otimes> b = \<zero>" by auto
qed
lemma m_lcancel:
assumes prem: "a \<noteq> \<zero>"
and R: "a \<in> carrier R" "b \<in> carrier R" "c \<in> carrier R"
shows "(a \<otimes> b = a \<otimes> c) = (b = c)"
proof
assume eq: "a \<otimes> b = a \<otimes> c"
with R have "a \<otimes> (b \<ominus> c) = \<zero>" by algebra
with R have "a = \<zero> \<or> (b \<ominus> c) = \<zero>" by (simp add: integral_iff)
with prem and R have "b \<ominus> c = \<zero>" by auto
with R have "b = b \<ominus> (b \<ominus> c)" by algebra
also from R have "b \<ominus> (b \<ominus> c) = c" by algebra
finally show "b = c" .
next
assume "b = c" then show "a \<otimes> b = a \<otimes> c" by simp
qed
lemma m_rcancel:
assumes prem: "a \<noteq> \<zero>"
and R: "a \<in> carrier R" "b \<in> carrier R" "c \<in> carrier R"
shows conc: "(b \<otimes> a = c \<otimes> a) = (b = c)"
proof -
from prem and R have "(a \<otimes> b = a \<otimes> c) = (b = c)" by (rule m_lcancel)
with R show ?thesis by algebra
qed
end
subsection \<open>Fields\<close>
text \<open>Field would not need to be derived from domain, the properties
for domain follow from the assumptions of field\<close>
lemma fieldE :
fixes R (structure)
assumes "field R"
shows "cring R"
and one_not_zero : "\<one> \<noteq> \<zero>"
and integral: "\<And>a b. \<lbrakk> a \<otimes> b = \<zero>; a \<in> carrier R; b \<in> carrier R \<rbrakk> \<Longrightarrow> a = \<zero> \<or> b = \<zero>"
and field_Units: "Units R = carrier R - {\<zero>}"
using assms unfolding field_def field_axioms_def domain_def domain_axioms_def by simp_all
lemma (in cring) cring_fieldI:
assumes field_Units: "Units R = carrier R - {\<zero>}"
shows "field R"
proof
from field_Units have "\<zero> \<notin> Units R" by fast
moreover have "\<one> \<in> Units R" by fast
ultimately show "\<one> \<noteq> \<zero>" by force
next
fix a b
assume acarr: "a \<in> carrier R"
and bcarr: "b \<in> carrier R"
and ab: "a \<otimes> b = \<zero>"
show "a = \<zero> \<or> b = \<zero>"
proof (cases "a = \<zero>", simp)
assume "a \<noteq> \<zero>"
with field_Units and acarr have aUnit: "a \<in> Units R" by fast
from bcarr have "b = \<one> \<otimes> b" by algebra
also from aUnit acarr have "... = (inv a \<otimes> a) \<otimes> b" by simp
also from acarr bcarr aUnit[THEN Units_inv_closed]
have "... = (inv a) \<otimes> (a \<otimes> b)" by algebra
also from ab and acarr bcarr aUnit have "... = (inv a) \<otimes> \<zero>" by simp
also from aUnit[THEN Units_inv_closed] have "... = \<zero>" by algebra
finally have "b = \<zero>" .
then show "a = \<zero> \<or> b = \<zero>" by simp
qed
qed (rule field_Units)
text \<open>Another variant to show that something is a field\<close>
lemma (in cring) cring_fieldI2:
assumes notzero: "\<zero> \<noteq> \<one>"
and invex: "\<And>a. \<lbrakk>a \<in> carrier R; a \<noteq> \<zero>\<rbrakk> \<Longrightarrow> \<exists>b\<in>carrier R. a \<otimes> b = \<one>"
shows "field R"
apply (rule cring_fieldI, simp add: Units_def)
apply (rule, clarsimp)
apply (simp add: notzero)
proof (clarsimp)
fix x
assume xcarr: "x \<in> carrier R"
and "x \<noteq> \<zero>"
then have "\<exists>y\<in>carrier R. x \<otimes> y = \<one>" by (rule invex)
then obtain y where ycarr: "y \<in> carrier R" and xy: "x \<otimes> y = \<one>" by fast
from xy xcarr ycarr have "y \<otimes> x = \<one>" by (simp add: m_comm)
with ycarr and xy show "\<exists>y\<in>carrier R. y \<otimes> x = \<one> \<and> x \<otimes> y = \<one>" by fast
qed
subsection \<open>Morphisms\<close>
definition
ring_hom :: "[('a, 'm) ring_scheme, ('b, 'n) ring_scheme] => ('a => 'b) set"
where "ring_hom R S =
{h. h \<in> carrier R \<rightarrow> carrier S \<and>
(\<forall>x y. x \<in> carrier R \<and> y \<in> carrier R \<longrightarrow>
h (x \<otimes>\<^bsub>R\<^esub> y) = h x \<otimes>\<^bsub>S\<^esub> h y \<and> h (x \<oplus>\<^bsub>R\<^esub> y) = h x \<oplus>\<^bsub>S\<^esub> h y) \<and>
h \<one>\<^bsub>R\<^esub> = \<one>\<^bsub>S\<^esub>}"
lemma ring_hom_memI:
fixes R (structure) and S (structure)
assumes "\<And>x. x \<in> carrier R \<Longrightarrow> h x \<in> carrier S"
and "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> h (x \<otimes> y) = h x \<otimes>\<^bsub>S\<^esub> h y"
and "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> h (x \<oplus> y) = h x \<oplus>\<^bsub>S\<^esub> h y"
and "h \<one> = \<one>\<^bsub>S\<^esub>"
shows "h \<in> ring_hom R S"
by (auto simp add: ring_hom_def assms Pi_def)
lemma ring_hom_memE:
fixes R (structure) and S (structure)
assumes "h \<in> ring_hom R S"
shows "\<And>x. x \<in> carrier R \<Longrightarrow> h x \<in> carrier S"
and "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> h (x \<otimes> y) = h x \<otimes>\<^bsub>S\<^esub> h y"
and "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> h (x \<oplus> y) = h x \<oplus>\<^bsub>S\<^esub> h y"
and "h \<one> = \<one>\<^bsub>S\<^esub>"
using assms unfolding ring_hom_def by auto
lemma ring_hom_closed:
"\<lbrakk> h \<in> ring_hom R S; x \<in> carrier R \<rbrakk> \<Longrightarrow> h x \<in> carrier S"
by (auto simp add: ring_hom_def funcset_mem)
lemma ring_hom_mult:
fixes R (structure) and S (structure)
shows "\<lbrakk> h \<in> ring_hom R S; x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> h (x \<otimes> y) = h x \<otimes>\<^bsub>S\<^esub> h y"
by (simp add: ring_hom_def)
lemma ring_hom_add:
fixes R (structure) and S (structure)
shows "\<lbrakk> h \<in> ring_hom R S; x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow> h (x \<oplus> y) = h x \<oplus>\<^bsub>S\<^esub> h y"
by (simp add: ring_hom_def)
lemma ring_hom_one:
fixes R (structure) and S (structure)
shows "h \<in> ring_hom R S \<Longrightarrow> h \<one> = \<one>\<^bsub>S\<^esub>"
by (simp add: ring_hom_def)
lemma ring_hom_zero:
fixes R (structure) and S (structure)
assumes "h \<in> ring_hom R S" "ring R" "ring S"
shows "h \<zero> = \<zero>\<^bsub>S\<^esub>"
proof -
have "h \<zero> = h \<zero> \<oplus>\<^bsub>S\<^esub> h \<zero>"
using ring_hom_add[OF assms(1), of \<zero> \<zero>] assms(2)
by (simp add: ring.ring_simprules(2) ring.ring_simprules(15))
thus ?thesis
by (metis abelian_group.l_neg assms ring.is_abelian_group ring.ring_simprules(18) ring.ring_simprules(2) ring_hom_closed)
qed
locale ring_hom_cring =
R?: cring R + S?: cring S for R (structure) and S (structure) + fixes h
assumes homh [simp, intro]: "h \<in> ring_hom R S"
notes hom_closed [simp, intro] = ring_hom_closed [OF homh]
and hom_mult [simp] = ring_hom_mult [OF homh]
and hom_add [simp] = ring_hom_add [OF homh]
and hom_one [simp] = ring_hom_one [OF homh]
lemma (in ring_hom_cring) hom_zero [simp]: "h \<zero> = \<zero>\<^bsub>S\<^esub>"
proof -
have "h \<zero> \<oplus>\<^bsub>S\<^esub> h \<zero> = h \<zero> \<oplus>\<^bsub>S\<^esub> \<zero>\<^bsub>S\<^esub>"
by (simp add: hom_add [symmetric] del: hom_add)
then show ?thesis by (simp del: S.r_zero)
qed
lemma (in ring_hom_cring) hom_a_inv [simp]:
"x \<in> carrier R \<Longrightarrow> h (\<ominus> x) = \<ominus>\<^bsub>S\<^esub> h x"
proof -
assume R: "x \<in> carrier R"
then have "h x \<oplus>\<^bsub>S\<^esub> h (\<ominus> x) = h x \<oplus>\<^bsub>S\<^esub> (\<ominus>\<^bsub>S\<^esub> h x)"
by (simp add: hom_add [symmetric] R.r_neg S.r_neg del: hom_add)
with R show ?thesis by simp
qed
lemma (in ring_hom_cring) hom_finsum [simp]:
assumes "f: A \<rightarrow> carrier R"
shows "h (\<Oplus> i \<in> A. f i) = (\<Oplus>\<^bsub>S\<^esub> i \<in> A. (h o f) i)"
using assms by (induct A rule: infinite_finite_induct, auto simp: Pi_def)
lemma (in ring_hom_cring) hom_finprod:
assumes "f: A \<rightarrow> carrier R"
shows "h (\<Otimes> i \<in> A. f i) = (\<Otimes>\<^bsub>S\<^esub> i \<in> A. (h o f) i)"
using assms by (induct A rule: infinite_finite_induct, auto simp: Pi_def)
declare ring_hom_cring.hom_finprod [simp]
lemma id_ring_hom [simp]: "id \<in> ring_hom R R"
by (auto intro!: ring_hom_memI)
(* Next lemma contributed by Paulo Emílio de Vilhena. *)
lemma ring_hom_trans:
"\<lbrakk> f \<in> ring_hom R S; g \<in> ring_hom S T \<rbrakk> \<Longrightarrow> g \<circ> f \<in> ring_hom R T"
by (rule ring_hom_memI) (auto simp add: ring_hom_closed ring_hom_mult ring_hom_add ring_hom_one)
subsection\<open>Jeremy Avigad's @{text"More_Finite_Product"} material\<close>
(* need better simplification rules for rings *)
(* the next one holds more generally for abelian groups *)
lemma (in cring) sum_zero_eq_neg: "x \<in> carrier R \<Longrightarrow> y \<in> carrier R \<Longrightarrow> x \<oplus> y = \<zero> \<Longrightarrow> x = \<ominus> y"
by (metis minus_equality)
lemma (in domain) square_eq_one:
fixes x
assumes [simp]: "x \<in> carrier R"
and "x \<otimes> x = \<one>"
shows "x = \<one> \<or> x = \<ominus>\<one>"
proof -
have "(x \<oplus> \<one>) \<otimes> (x \<oplus> \<ominus> \<one>) = x \<otimes> x \<oplus> \<ominus> \<one>"
by (simp add: ring_simprules)
also from \<open>x \<otimes> x = \<one>\<close> have "\<dots> = \<zero>"
by (simp add: ring_simprules)
finally have "(x \<oplus> \<one>) \<otimes> (x \<oplus> \<ominus> \<one>) = \<zero>" .
then have "(x \<oplus> \<one>) = \<zero> \<or> (x \<oplus> \<ominus> \<one>) = \<zero>"
by (intro integral) auto
then show ?thesis
by (metis add.inv_closed add.inv_solve_right assms(1) l_zero one_closed zero_closed)
qed
lemma (in domain) inv_eq_self: "x \<in> Units R \<Longrightarrow> x = inv x \<Longrightarrow> x = \<one> \<or> x = \<ominus>\<one>"
by (metis Units_closed Units_l_inv square_eq_one)
text \<open>
The following translates theorems about groups to the facts about
the units of a ring. (The list should be expanded as more things are
needed.)
\<close>
lemma (in ring) finite_ring_finite_units [intro]: "finite (carrier R) \<Longrightarrow> finite (Units R)"
by (rule finite_subset) auto
lemma (in monoid) units_of_pow:
fixes n :: nat
shows "x \<in> Units G \<Longrightarrow> x [^]\<^bsub>units_of G\<^esub> n = x [^]\<^bsub>G\<^esub> n"
apply (induct n)
apply (auto simp add: units_group group.is_monoid
monoid.nat_pow_0 monoid.nat_pow_Suc units_of_one units_of_mult)
done
lemma (in cring) units_power_order_eq_one:
"finite (Units R) \<Longrightarrow> a \<in> Units R \<Longrightarrow> a [^] card(Units R) = \<one>"
by (metis comm_group.power_order_eq_one units_comm_group units_of_carrier units_of_one units_of_pow)
subsection\<open>Jeremy Avigad's @{text"More_Ring"} material\<close>
lemma (in cring) field_intro2: "\<zero>\<^bsub>R\<^esub> \<noteq> \<one>\<^bsub>R\<^esub> \<Longrightarrow> \<forall>x \<in> carrier R - {\<zero>\<^bsub>R\<^esub>}. x \<in> Units R \<Longrightarrow> field R"
apply (unfold_locales)
apply (use cring_axioms in auto)
apply (rule trans)
apply (subgoal_tac "a = (a \<otimes> b) \<otimes> inv b")
apply assumption
apply (subst m_assoc)
apply auto
apply (unfold Units_def)
apply auto
done
lemma (in monoid) inv_char:
"x \<in> carrier G \<Longrightarrow> y \<in> carrier G \<Longrightarrow> x \<otimes> y = \<one> \<Longrightarrow> y \<otimes> x = \<one> \<Longrightarrow> inv x = y"
apply (subgoal_tac "x \<in> Units G")
apply (subgoal_tac "y = inv x \<otimes> \<one>")
apply simp
apply (erule subst)
apply (subst m_assoc [symmetric])
apply auto
apply (unfold Units_def)
apply auto
done
lemma (in comm_monoid) comm_inv_char: "x \<in> carrier G \<Longrightarrow> y \<in> carrier G \<Longrightarrow> x \<otimes> y = \<one> \<Longrightarrow> inv x = y"
by (simp add: inv_char m_comm)
lemma (in ring) inv_neg_one [simp]: "inv (\<ominus> \<one>) = \<ominus> \<one>"
apply (rule inv_char)
apply (auto simp add: l_minus r_minus)
done
lemma (in monoid) inv_eq_imp_eq: "x \<in> Units G \<Longrightarrow> y \<in> Units G \<Longrightarrow> inv x = inv y \<Longrightarrow> x = y"
apply (subgoal_tac "inv (inv x) = inv (inv y)")
apply (subst (asm) Units_inv_inv)+
apply auto
done
lemma (in ring) Units_minus_one_closed [intro]: "\<ominus> \<one> \<in> Units R"
apply (unfold Units_def)
apply auto
apply (rule_tac x = "\<ominus> \<one>" in bexI)
apply auto
apply (simp add: l_minus r_minus)
done
lemma (in ring) inv_eq_neg_one_eq: "x \<in> Units R \<Longrightarrow> inv x = \<ominus> \<one> \<longleftrightarrow> x = \<ominus> \<one>"
apply auto
apply (subst Units_inv_inv [symmetric])
apply auto
done
lemma (in monoid) inv_eq_one_eq: "x \<in> Units G \<Longrightarrow> inv x = \<one> \<longleftrightarrow> x = \<one>"
by (metis Units_inv_inv inv_one)
end