-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQLearningAgent.py
61 lines (51 loc) · 2.25 KB
/
QLearningAgent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import gym
import numpy as np
# Step 2: Define the Q-Learning Agent
class QLearningAgent:
def __init__(self, num_states, num_actions, learning_rate=0.1, discount_factor=0.9, exploration_prob=0.1):
self.num_states = num_states
self.num_actions = num_actions
self.learning_rate = learning_rate
self.discount_factor = discount_factor
self.exploration_prob = exploration_prob
self.q_table = np.zeros((num_states, num_actions))
def choose_action(self, state):
if np.random.uniform(0, 1) < self.exploration_prob:
return np.random.randint(0, self.num_actions)
else:
return np.argmax(self.q_table[state])
def update_q_table(self, state, action, reward, next_state):
best_next_action = np.argmax(self.q_table[next_state])
self.q_table[state, action] += self.learning_rate * (reward + self.discount_factor * self.q_table[next_state, best_next_action] - self.q_table[state, action])
# Step 4: Define Reward Function
def get_reward(action):
# Define your custom reward logic based on the action taken
# Return a numeric reward value
pass
# Step 6: Interpret Acronyms
def interpret_acronym(acronym, agent):
if acronym.upper() == "AI":
# Assuming "AI" means to take a specific action in the environment
state = env.reset()
action = agent.choose_action(state)
next_state, _, _, _ = env.step(action)
reward = get_reward(action)
agent.update_q_table(state, action, reward, next_state)
# Step 1: Set Up the Gym Environment
env = gym.make('CartPole-v1')
num_states = env.observation_space.shape[0]
num_actions = env.action_space.n
# Step 3: Initialize Q-Table
q_learning_agent = QLearningAgent(num_states, num_actions)
# Step 5: Implement Q-Learning Algorithm
for episode in range(1000):
state = env.reset()
done = False
while not done:
action = q_learning_agent.choose_action(state)
next_state, _, done, _ = env.step(action)
reward = get_reward(action)
q_learning_agent.update_q_table(state, action, reward, next_state)
state = next_state
# Step 6: Interpret Acronyms (Example Usage)
interpret_acronym("AI", q_learning_agent)