-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcagi.py
278 lines (205 loc) · 8.11 KB
/
cagi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import agi
import cagi
import CAGI
import discord
from discord.ext import commands
import gym
import numpy as np
import tensorflow
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import openai
# Initialize
intents = discord.Intents.default()
intents.message_content = True
bot = commands.Bot(command_prefix="!", intents=intents)
cagi_agent = CAGI()
openai.api_key = 'YOUR_API_KEY'
# Helper functions
def interpret_acronym(acronym, dict):
# function body
def interact_with_gym():
# gym environment code
# Load data
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2)
knn_classifier = KNeighborsClassifier(n_neighbors=3)
knn_classifier.fit(X_train, y_train)
# Chatbot class
class Chatbot:
def __init__(self):
self.chat_history = []
def record_chat(self, message):
self.chat_history.append(message)
# Other methods
chatbot = Chatbot()
# Bot events
@bot.event
async def on_ready():
print("Ready!")
@bot.event
async def on_message(message):
if message.content.startswith("!interpret"):
pass
if message.content.startswith("!interact"):
pass
if message.content.startswith("!reboot")
pass
if message.content.startswith("!create_ai")
pass
if message.content.startswith("!formulated_expansion")
pass
chatbot.record_chat(message)
class CAGI:
def __init__(self):
self.knowledge_base = {}
def learn(self, topic, information):
self.knowledge_base[topic] = information
def query(self, topic):
return self.knowledge_base.get(topic, "Information not found in the knowledge base.")
cagi = CAGI()
# Learn about various topics
cagi.learn("Machine Learning", "A type of artificial intelligence that allows a system to learn from data rather than through explicit programming.")
cagi.learn("Neural Networks", "A set of algorithms, modeled loosely after the human brain, that are designed to recognize patterns.")
cagi.learn("Natural Language Processing", "A field of AI that focuses on the interaction between computers and humans through natural language.")
cagi.learn("Reinforcement Learning", "A type of machine learning where an agent learns how to behave in an environment by performing actions and observing the rewards of those actions.")
# Query for information
print(cagi.query("Machine Learning"))
print(cagi.query("Neural Networks"))
print(cagi.query("Robotics"))
# Define A.C.R.O.N.Y.M.F.O.R.M.U.L.A
class BATMANAI:
def __init__(self):
self.chat_history = [] # Initialize an empty list to store chat data
def ():
# Define your training logic here
pass
def Cagi():
# Define your training logic here
pass
def record_chat(self, message):
self.chat_history.append(message) # Add the message to the chat history
def Assist(self):
# Implement assistance functionality
pass
def Teach(self):
# Implement teaching functionality
pass
def Monitor(self):
# Implement monitoring functionality
pass
def Analyze(self):
# Implement analysis functionality
pass
def Notify(self):
# Implement notification functionality
pass
# Initialize BATMANAI
batman_ai = BATMANAI()
# Define a function for chatting with the bot
async def chat_with_bot(message):
if message.content.lower() == 'hello':
await message.channel.send("Hello! How do you need my Assitance?")
elif message.content.lower() == 'goodbye':
await message.channel.send("Goodbye! Have a great day!")
else:
await message.channel.send("I'll try to come up with a better response. Try asking me about an acronym.")
# Initialize BATMANAI
batman_ai = BATMANAI()
@bot.event
async def on_message(message):
if message.author == bot.user:
return
if message.content.startswith("!interpret"):
acronym = message.content.split("!interpret ")[1]
expanded_form = interpret_acronym(acronym, acronym_dict)
await message.channel.send(f"The expanded form of {acronym} is: {expanded_form}")
# ... (existing code)
if message.content.startswith("!formulate"):
acronym = message.content.split("!formulate ")[1]
formulated_expansion = formulate_acronym(acronym)
await message.channel.send(formulated_expansion)
# Record chat data
batman_ai.record_chat(message.content)
# Initialize BATMANAI
batman_ai = BATMANAI()
@bot.event
async def on_message(message):
if message.author == bot.user:
return
if message.content.startswith("!interpret"):
acronym = message.content.split("!interpret ")[1]
expanded_form = interpret_acronym(acronym, acronym_dict)
await message.channel.send(f"The expanded form of {acronym} is: {expanded_form}")
# ... (existing code)
if message.content.startswith("!formulate"):
acronym = message.content.split("!formulate ")[1]
formulated_expansion = formulate_acronym(acronym)
await message.channel.send(formulated_expansion)
# Record chat data
batman_ai.record_chat(message.content)
@bot.command()
async def reboot(ctx):
# Add any necessary reboot logic here
await ctx.send("Rebooting...") # Example message, you can customize it
# For example, you can reinitialize your bot or reset any necessary variables
# NOTE: Be careful with rebooting, as it will temporarily disconnect your bot.
@bot.event
async def on_message(message):
if message.author == bot.user:
return
if message.content.startswith("!interpret"):
# ... (existing code)
if message.content.startswith("!formulate"):
# ... (existing code)
if message.content.startswith("!reboot"):
await reboot(message.channel)
# Record chat data
batman_ai.record_chat(message.content)
@bot.event
async def on_message(message):
if message.author == bot.user:
return
if message.content.startswith("!interpret"):
# ... (existing code)
if message.content.startswith("!formulate"):
# ... (existing code)
if message.content.startswith("!create_ai"):
acronym = message.content.split("!create_ai ")[1]
ai_expansion = batman_ai.create_ai(acronym)
await message.channel.send(f"The AI expansion of {acronym} is: {ai_expansion}")
# Record chat data
batman_ai.record_chat(message.content)
@bot.event
async def on_message(message):
if message.author == bot.user:
return
if message.content.startswith("!interpret"):
# ... (existing code)
if message.content.startswith("!formulate"):
# ... (existing code)
if message.content.startswith("!create_ai"):
acronym = message.content.split("!create_ai ")[1]
ai_expansion = batman_ai.create_ai(acronym)
await message.channel.send(f"The AI expansion of {acronym} is: {ai_expansion}")
# Record chat data
batman_ai.record_chat(message.content)
if message.content.startswith("!reboot"):
# Add any necessary reboot logic here
await message.channel.send("Rebooting...") # Example message, you can customize it
# For example, you can reinitialize your bot or reset any necessary variables
# NOTE: Be careful with rebooting, as it will temporarily disconnect your bot
# Restart the bot
await bot.logout()
# Add this command to your event loop
@bot.event
async def on_message(message):
if message.author == bot.user:
return
# Create an instance of CAGI
cagi = CAGI()
# Use the CAGI instance as described in the previous example
cagi.learn("Machine Learning", "A type of artificial intelligence that allows a system to learn from data rather than through explicit programming.")
print(cagi.query("Machine Learning"))
bot.run("")