-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainq.py
57 lines (41 loc) · 1.49 KB
/
trainq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import trainq
import openai
def trainq():
# Define your training logic here
pass
intents = discord.Intents.default()
intents.message_content = True
bot = commands.Bot(command_prefix="!", intents=intents)
def interpret_acronym(acronym, acronym_dict):
return acronym_dict.get(acronym.upper(), "Acronym not found in the dictionary.")
def interact_with_gym_environment():
env = gym.make('CartPole-v1')
obs = env.reset()
for _ in range(1000):
env.render()
# Assuming q_learning_agent is your Q-learning agent
action = q_learning_agent(obs)
obs, reward, done, _ = env.step(action)
if done:
obs = env.reset()
env.close()
acronym_dict = {
"AI": "Artificial Intelligence",
"ML": "Machine Learning",
"DL": "Deep Learning",
"NLP": "Natural Language Processing",
"API": "Application Programming Interface",
}
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2)
knn_classifier = KNeighborsClassifier(n_neighbors=3)
knn_classifier.fit(X_train, y_train)
model = MobileNetV2(weights='imagenet')
# Assuming you have trained a Q-learning agent
def train_q_learning():
# Define your Q-learning parameters and train the agent
# ...
return q_learning_agent
# Train the Q-learning agent
q_learning_agent = train_q_learning()
Q(s, a) = (1 - alpha) * Q(s, a) + alpha * (reward + gamma * max_a Q(s', a'))