forked from ZhangAoCanada/RADDet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
190 lines (171 loc) · 8.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Title: RADDet
# Authors: Ao Zhang, Erlik Nowruzi, Robert Laganiere
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import shutil
import cv2
import numpy as np
import tensorflow as tf
import tensorflow.keras as K
import matplotlib.pyplot as plt
from glob import glob
from tqdm import tqdm
import model.model as M
from dataset.batch_data_generator import DataGenerator
import metrics.mAP as mAP
import util.loader as loader
import util.helper as helper
import util.drawer as drawer
def main():
### NOTE: GPU manipulation, you may can print this out if necessary ###
gpus = tf.config.experimental.list_physical_devices('GPU')
if len(gpus) > 0:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
config = loader.readConfig()
config_data = config["DATA"]
config_radar = config["RADAR_CONFIGURATION"]
config_model = config["MODEL"]
config_train = config["TRAIN"]
anchor_boxes = loader.readAnchorBoxes() # load anchor boxes with order
num_classes = len(config_data["all_classes"])
### NOTE: using the yolo head shape out from model for data generator ###
model = M.RADDet(config_model, config_data, config_train, anchor_boxes)
model.build([None] + config_model["input_shape"])
model.summary()
### NOTE: preparing data ###
data_generator = DataGenerator(config_data, config_train, config_model, \
model.features_shape, anchor_boxes)
train_generator = data_generator.trainGenerator()
validate_generator = data_generator.validateGenerator()
### NOTE: training settings ###
logdir = os.path.join(config_train["log_dir"], \
"b_" + str(config_train["batch_size"]) + \
"lr_" + str(config_train["learningrate_init"]))
if not os.path.exists(logdir):
os.makedirs(logdir)
global_steps = tf.Variable(1, trainable=False, dtype=tf.int64)
optimizer = K.optimizers.Adam(learning_rate=config_train["learningrate_init"])
writer = tf.summary.create_file_writer(logdir)
ckpt = tf.train.Checkpoint(optimizer=optimizer, model=model, step=global_steps)
log_specific_dir = os.path.join(logdir, "ckpt")
manager = tf.train.CheckpointManager(ckpt, log_specific_dir, max_to_keep=3)
### NOTE: restore from last checkpoint ###
ckpt.restore(manager.latest_checkpoint)
if manager.latest_checkpoint:
print("Restored from {}".format(manager.latest_checkpoint))
global_steps.assign(ckpt.step.numpy())
### NOTE: define training step ###
@tf.function
def train_step(data, label):
""" define train step for training """
with tf.GradientTape() as tape:
feature = model(data)
pred_raw, pred = model.decodeYolo(feature)
total_loss, box_loss, conf_loss, category_loss = \
model.loss(pred_raw, pred, label, raw_boxes[..., :6])
gradients = tape.gradient(total_loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
### NOTE: writing summary data ###
with writer.as_default():
tf.summary.scalar("lr", optimizer.lr, step=global_steps)
tf.summary.scalar("loss/total_loss", total_loss, step=global_steps)
tf.summary.scalar("loss/box_loss", box_loss, step=global_steps)
tf.summary.scalar("loss/conf_loss", conf_loss, step=global_steps)
tf.summary.scalar("loss/category_loss", category_loss, step=global_steps)
writer.flush()
return total_loss, box_loss, conf_loss, category_loss
### NOTE: define validate step ###
# @tf.function
def validate_step():
mean_ap_test = 0.0
ap_all_class_test = []
ap_all_class = []
total_losstest = []
box_losstest = []
conf_losstest = []
category_losstest = []
for class_id in range(num_classes):
ap_all_class.append([])
for data, label, raw_boxes in validate_generator.\
batch(data_generator.batch_size).take(data_generator.total_validate_batches):
feature = model(data)
pred_raw, pred = model.decodeYolo(feature)
total_loss_b, box_loss_b, conf_loss_b, category_loss_b = \
model.loss(pred_raw, pred, label, raw_boxes[..., :6])
total_losstest.append(total_loss_b)
box_losstest.append(box_loss_b)
conf_losstest.append(conf_loss_b)
category_losstest.append(category_loss_b)
for batch_id in range(raw_boxes.shape[0]):
raw_boxes_frame = raw_boxes[batch_id]
pred_frame = pred[batch_id]
predicitons = helper.yoloheadToPredictions(pred_frame, \
conf_threshold=config_model["confidence_threshold"])
nms_pred = helper.nms(predicitons, config_model["nms_iou3d_threshold"], \
config_model["input_shape"], sigma=0.3, method="nms")
mean_ap, ap_all_class = mAP.mAP(nms_pred, raw_boxes_frame.numpy(), \
config_model["input_shape"], ap_all_class, \
tp_iou_threshold=config_model["mAP_iou3d_threshold"])
mean_ap_test += mean_ap
for ap_class_i in ap_all_class:
if len(ap_class_i) == 0:
class_ap = 0.
else:
class_ap = np.mean(ap_class_i)
ap_all_class_test.append(class_ap)
mean_ap_test /= data_generator.batch_size*data_generator.total_validate_batches
tf.print("-------> ap: %.6f"%(mean_ap_test))
### writing summary data ###
with writer.as_default():
tf.summary.scalar("ap/ap_all", mean_ap_test, step=global_steps)
tf.summary.scalar("ap/ap_person", ap_all_class_test[0], step=global_steps)
tf.summary.scalar("ap/ap_bicycle", ap_all_class_test[1], step=global_steps)
tf.summary.scalar("ap/ap_car", ap_all_class_test[2], step=global_steps)
tf.summary.scalar("ap/ap_motorcycle", ap_all_class_test[3], step=global_steps)
tf.summary.scalar("ap/ap_bus", ap_all_class_test[4], step=global_steps)
tf.summary.scalar("ap/ap_truck", ap_all_class_test[5], step=global_steps)
### NOTE: validate loss ###
tf.summary.scalar("validate_loss/total_loss", \
np.mean(total_losstest), step=global_steps)
tf.summary.scalar("validate_loss/box_loss", \
np.mean(box_losstest), step=global_steps)
tf.summary.scalar("validate_loss/conf_loss", \
np.mean(conf_losstest), step=global_steps)
tf.summary.scalar("validate_loss/category_loss", \
np.mean(category_losstest), step=global_steps)
writer.flush()
###---------------------------- TRAIN SET -------------------------###
for data, label, raw_boxes in train_generator.repeat().\
batch(data_generator.batch_size).take(data_generator.total_train_batches):
total_loss, box_loss, conf_loss, category_loss = train_step(data, label)
tf.print("=======> train step: %4d, lr: %.6f, total_loss: %4.2f, \
box_loss: %4.2f, conf_loss: %4.2f, category_loss: %4.2f" % \
(global_steps, optimizer.lr.numpy(), total_loss, box_loss, \
conf_loss, category_loss))
### NOTE: learning rate decay ###
global_steps.assign_add(1)
if global_steps < config_train["warmup_steps"]:
# lr = config_train["learningrate_init"]
if global_steps < config_train["startup_steps"]:
lr = config_train["learningrate_startup"]
else:
lr = config_train["learningrate_init"]
optimizer.lr.assign(lr)
elif global_steps % config_train["learningrate_decay_gap"] == 0:
lr = optimizer.lr.numpy()
lr = config_train["learningrate_end"] + \
config_train["learningrate_decay"] * \
(lr - config_train["learningrate_end"])
optimizer.lr.assign(lr)
###---------------------------- VALIDATE SET -------------------------###
if global_steps.numpy() >= config_train["validate_start_steps"] and \
global_steps.numpy() % config_train["validate_gap"] == 0:
validate_step()
save_path = manager.save()
print("Saved checkpoint for step {}: {}".format(int(ckpt.step), save_path))
if __name__ == "__main__":
main()