-
Notifications
You must be signed in to change notification settings - Fork 517
/
roboflow_ppyoloe.yaml
68 lines (54 loc) · 1.92 KB
/
roboflow_ppyoloe.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Checkout the datasets at https://universe.roboflow.com/roboflow-100?ref=blog.roboflow.com
#
# `dataset_name` refers to the official name of the dataset.
# You can find it in the url of the dataset: https://universe.roboflow.com/roboflow-100/digits-t2eg6 -> digits-t2eg6
#
# Example: python -m super_gradients.train_from_recipe --config-name=roboflow_ppyoloe dataset_name=digits-t2eg6
defaults:
- training_hyperparams: coco2017_ppyoloe_train_params
- dataset_params: roboflow_detection_dataset_params
- checkpoint_params: default_checkpoint_params
- arch_params: ppyoloe_m_arch_params
- _self_
- variable_setup
dataset_name: ??? # Placeholder for the name of the dataset you want to use (e.g. "digits-t2eg6")
dataset_params:
dataset_name: ${dataset_name}
num_classes: ${roboflow_dataset_num_classes:${dataset_name}}
architecture: ppyoloe_m
arch_params:
num_classes: ${num_classes}
train_dataloader: roboflow_train_yolox
val_dataloader: roboflow_val_yolox
load_checkpoint: False
checkpoint_params:
pretrained_weights: coco
result_path: # By defaults saves results in checkpoints directory
resume: False
training_hyperparams:
resume: ${resume}
max_epochs: 100
mixed_precision: True
criterion_params:
num_classes: ${num_classes}
reg_max: ${arch_params.head.reg_max}
phase_callbacks:
- RoboflowResultCallback:
dataset_name: ${dataset_name}
output_path: ${result_path}
loss: PPYoloELoss
valid_metrics_list:
- DetectionMetrics:
score_thres: 0.1
top_k_predictions: 300
num_cls: ${num_classes}
normalize_targets: True
post_prediction_callback:
_target_: super_gradients.training.models.detection_models.pp_yolo_e.PPYoloEPostPredictionCallback
score_threshold: 0.01
nms_top_k: 1000
max_predictions: 300
nms_threshold: 0.7
multi_gpu: DDP
num_gpus:
experiment_name: ${architecture}_roboflow_${dataset_name}