-
Notifications
You must be signed in to change notification settings - Fork 517
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Detection Visualization Callback #1109
Comments
Try to look at "Images" tab there. I believe you're in the "Scalars" tab. |
@NatanBagrov Thanks for the suggestion, but no, they are most certainly not appearing in tensorboard, even the "Images" tab. However, to narrow the problem, I've abstracted tensorboard completely for now. It appears that my callback is not generating any images at all. I created a small experiment where I create a dataloader, undo function (see https://github.com/Deci-AI/super-gradients/blob/master/documentation/source/ObjectDetection.md) and then run the following:
So, if I understand correctly, the Unfortunately, after running all of this, my checkpoint_dir remains empty (no images have been saved!). Edit: I'm now using super-gradients version 3.1.2, not the custom version I had mentioned before. This issue persists on both versions. |
Thanks for your elaboration. @Louis-Dupont? |
@sewty For me, I got it working by setting the phase to if context.epoch % self.freq == 0 and context.batch_idx == self.batch_idx: If you are using Also be aware of the model you are using. I am experiencing some bugs with YOLO-NAS, so I had to modify |
Detection visualization callback is currently being worked on by @shaydeci |
💡 Your Question
Hey all! I'm trying to set up a detection visualization callback in a code-based model (as in, I'm not using configuration files). I referenced https://github.com/DeciAI/supergradients/blob/master/documentation/source/ObjectDetection.md to start, and defined the following phase callback inside of my training hyperparameter dictionary:
"phase_callbacks": [
DetectionVisualizationCallback(
phase=Phase.VALIDATION_EPOCH_END,
freq=1,
post_prediction_callback=YoloPostPredictionCallback(),
classes=data_config["names"],
)
],
The model is able to complete training and validation, but when I load tensorboard with the events file specified, I can only find my standard validation metrics (DetectionMetrics_050). No image data appears to be available.
Does anyone have a working example of a Detection Visualization Callback using code and not a config file? Also, is there any way to get the image data produced by this callback (assuming it IS producing something and not erroneous) other than tensorboard?
NOTE: Since it is not clear from the versions list below, I am running a local copy of super-gradients 3.1.1. It is edited to fix the issue described here: #999.
Versions
absl-py==1.4.0
alabaster==0.7.13
antlr4-python3-runtime==4.9.3
asttokens==2.2.1
astunparse==1.6.3
attrs==23.1.0
Babel==2.12.1
backcall==0.2.0
beautifulsoup4==4.12.2
blinker==1.6.2
boto3==1.26.142
botocore==1.29.142
Brotli==1.0.9
build==0.10.0
cachetools==5.3.1
certifi==2023.5.7
chardet==5.1.0
charset-normalizer==3.1.0
click==8.1.3
colorama==0.4.6
coloredlogs==15.0.1
contourpy==1.0.7
coverage==5.3.1
cycler==0.11.0
daemonize==2.5.0
debugpy==1.6.7
decorator==5.1.1
Deprecated==1.2.14
distlib==0.3.6
docutils==0.17.1
einops==0.3.2
exceptiongroup==1.1.1
executing==1.2.0
filelock==3.12.0
Flask==2.3.2
Flask-Compress==1.13
flatbuffers==23.5.26
fonttools==4.39.4
future==0.18.3
gast==0.4.0
google-auth==2.19.0
google-auth-oauthlib==1.0.0
google-pasta==0.2.0
grpcio==1.54.2
guildai==0.9.0
h5py==3.8.0
hiplot==0.1.33
humanfriendly==10.0
hydra-core==1.3.2
idna==3.4
imagesize==1.4.1
iniconfig==2.0.0
ipython==8.13.2
itsdangerous==2.1.2
jax==0.4.10
jedi==0.18.2
Jinja2==3.1.2
jmespath==1.0.1
joblib==1.2.0
json-tricks==3.16.1
jsonschema==4.17.3
keras==2.12.0
kiwisolver==1.4.4
libclang==16.0.0
Markdown==3.4.3
markdown-it-py==2.2.0
MarkupSafe==2.1.2
matplotlib==3.7.1
matplotlib-inline==0.1.6
mdurl==0.1.2
ml-dtypes==0.1.0
mpmath==1.3.0
natsort==8.3.1
networkx==3.1
numpy==1.23.0
oauthlib==3.2.2
omegaconf==2.3.0
onnx==1.13.0
onnx-simplifier==0.4.28
onnxruntime==1.13.1
opencv-python==4.7.0.72
opt-einsum==3.3.0
packaging==23.1
pandas==2.0.2
parso==0.8.3
pickleshare==0.7.5
Pillow==9.5.0
pip-tools==6.13.0
pkginfo==1.9.6
platformdirs==3.5.1
pluggy==1.0.0
prompt-toolkit==3.0.38
protobuf==3.20.3
psutil==5.9.5
pure-eval==0.2.2
pyasn1==0.5.0
pyasn1-modules==0.3.0
pycocotools==2.0.4
pyDeprecate==0.3.2
Pygments==2.15.1
pyparsing==2.4.5
pyproject_hooks==1.0.0
pyreadline3==3.4.1
pyrsistent==0.19.3
pytest==7.3.1
python-dateutil==2.8.2
pytz==2023.3
PyYAML==6.0
rapidfuzz==3.0.0
requests==2.31.0
requests-oauthlib==1.3.1
rich==13.3.5
rsa==4.9
s3transfer==0.6.1
scikit-learn==1.2.2
scipy==1.10.1
six==1.16.0
snowballstemmer==2.2.0
soupsieve==2.4.1
Sphinx==4.0.3
sphinx-rtd-theme==1.2.1
sphinxcontrib-applehelp==1.0.4
sphinxcontrib-devhelp==1.0.2
sphinxcontrib-htmlhelp==2.0.1
sphinxcontrib-jquery==4.1
sphinxcontrib-jsmath==1.0.1
sphinxcontrib-qthelp==1.0.3
sphinxcontrib-serializinghtml==1.1.5
stack-data==0.6.2
stringcase==1.2.0
-e git+https://github.com/Deci-AI/super-gradients.git@b969d7c0761c49aae819b921ecde394b7288867c#egg=super_gradients
sympy==1.12
tabview==1.4.4
tensorboard==2.12.3
tensorboard-data-server==0.7.0
tensorflow==2.12.0
tensorflow-estimator==2.12.0
tensorflow-intel==2.12.0
tensorflow-io-gcs-filesystem==0.31.0
termcolor==1.1.0
threadpoolctl==3.1.0
tomli==2.0.1
torch==2.0.1+cu117
torchinfo==1.8.0
torchmetrics==0.8.0
torchvision==0.15.2+cu117
tqdm==4.65.0
traitlets==5.9.0
treelib==1.6.1
typing_extensions==4.6.2
tzdata==2023.3
urllib3==1.26.16
virtualenv==20.23.0
wcwidth==0.2.6
Werkzeug==2.3.4
windows-curses==2.3.1
wrapt==1.14.1
The text was updated successfully, but these errors were encountered: