-
Notifications
You must be signed in to change notification settings - Fork 27
/
test_kindai_1.0.py
349 lines (287 loc) · 12.2 KB
/
test_kindai_1.0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
"""
Copyright (c) 2019-present NAVER Corp.
MIT License
"""
# -*- coding: cp932 -*-
import sys
import os
import time
import argparse
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from PIL import Image, ImageDraw, ImageFont
from utils import dataIterator, load_dict, gen_sample, load_mapping
from encoder_decoder import Encoder_Decoder
import cv2
from skimage import io
import numpy as np
import craft_utils
import imgproc
import file_utils
import json
import zipfile
import xml.etree.cElementTree as ET
import xml.dom.minidom as minidom
import codecs
from craft import CRAFT
from collections import OrderedDict
def copyStateDict(state_dict):
if list(state_dict.keys())[0].startswith("module"):
start_idx = 1
else:
start_idx = 0
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = ".".join(k.split(".")[start_idx:])
new_state_dict[name] = v
return new_state_dict
def str2bool(v):
return v.lower() in ("yes", "y", "true", "t", "1")
def pil2cv(imgPIL):
imgCV_RGB = np.array(imgPIL, dtype = np.uint8)
imgCV_BGR = np.array(imgPIL)[:, :, ::-1]
return imgCV_BGR
def cv2pil(imgCV):
imgCV_RGB = imgCV[:, :, ::-1]
imgPIL = Image.fromarray(imgCV_RGB)
return imgPIL
def cv2_putChar(draw, char, x, y, fontPIL, colorRGB):
draw.text(xy = (x,y), text = char, fill = colorRGB, font = fontPIL)
def cv2_putText_1(img, text, org, fontFace, fontScale, color):
min_x, max_x, min_y, max_y = org
imgPIL = cv2pil(img)
draw = ImageDraw.Draw(imgPIL)
fontPIL = ImageFont.truetype(font = fontFace, size = fontScale)
if max_x - min_x >= max_y- min_y:
#horizontal line
y = max_y
x = min_x
for char in text:
cv2_putChar(draw, char, x, y, fontPIL, color )
w, h = draw.textsize(char, font = fontPIL)
x += w + 10
else:
#vertical line
y = min_y
x = max_x - 10
for char in text:
cv2_putChar(draw, char, x, y, fontPIL, color )
w, h = draw.textsize(char, font = fontPIL)
y += h + 10
imgCV = pil2cv(imgPIL)
return imgCV
parser = argparse.ArgumentParser(description='Kindai document Recognition')
#params for text detection
parser.add_argument('--trained_model', default='./pretrain/synweights_4600.pth', type=str, help='pretrained model')
parser.add_argument('--text_threshold', default=0.7, type=float, help='text confidence threshold')
parser.add_argument('--low_text', default=0.4, type=float, help='text low-bound score')
parser.add_argument('--link_threshold', default=0.4, type=float, help='link confidence threshold')
parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda to train model')
parser.add_argument('--canvas_size', default=1000, type=int, help='image size for inference')
parser.add_argument('--mag_ratio', default=2, type=float, help='image magnification ratio')
parser.add_argument('--poly', default=False, action='store_true', help='enable polygon type')
parser.add_argument('--show_time', default=True, action='store_true', help='show processing time')
parser.add_argument('--test_folder', default='/data/', type=str, help='folder path to input images')
#params for text recognition
parser.add_argument('--model_path', default='./pretrain/WAP_params.pkl', type=str)
parser.add_argument('--dictionary_target', default='./pretrain/kindai_voc.txt', type=str)
args = parser.parse_args()
""" For test images in a folder """
image_list, _, _ = file_utils.get_files('./data/test')
result_folder = './data/result1/'
if not os.path.isdir(result_folder):
os.mkdir(result_folder)
def test_net(net, image, text_threshold, link_threshold, low_text, cuda, poly):
t0 = time.time()
# resize
img_resized, target_ratio, size_heatmap = imgproc.resize_aspect_ratio(image, args.canvas_size, interpolation=cv2.INTER_LINEAR, mag_ratio=args.mag_ratio)
ratio_h = ratio_w = 1 / target_ratio
# preprocessing
x = imgproc.normalizeMeanVariance(img_resized)
x = torch.from_numpy(x).permute(2, 0, 1) # [h, w, c] to [c, h, w]
x = Variable(x.unsqueeze(0)) # [c, h, w] to [b, c, h, w]
if cuda:
x = x.cuda()
# forward pass
y, _ = net(x)
# make score and link map
score_text = y[0,:,:,0].cpu().data.numpy()
score_link = y[0,:,:,1].cpu().data.numpy()
t0 = time.time() - t0
t1 = time.time()
# Post-processing
boxes, polys = craft_utils.getDetBoxes(score_text, score_link, text_threshold, link_threshold, low_text, poly)
# coordinate adjustment
boxes = craft_utils.adjustResultCoordinates(boxes, ratio_w, ratio_h)
polys = craft_utils.adjustResultCoordinates(polys, ratio_w, ratio_h)
for k in range(len(polys)):
if polys[k] is None: polys[k] = boxes[k]
t1 = time.time() - t1
# render results (optional)
render_img = score_text.copy()
render_img = np.hstack((render_img, score_link))
ret_score_text = imgproc.cvt2HeatmapImg(render_img)
if args.show_time : print("\ninfer/postproc time : {:.3f}/{:.3f}".format(t0, t1))
return boxes, polys, ret_score_text
def test(text_detection_modelpara, ocr_modelpara, dictionary_target):
# load net
net = CRAFT() # initialize
print('Loading text detection model from checkpoint {}'.format(text_detection_modelpara))
if args.cuda:
net.load_state_dict(copyStateDict(torch.load(text_detection_modelpara)))
else:
net.load_state_dict(copyStateDict(torch.load(text_detection_modelpara, map_location='cpu')))
if args.cuda:
net = net.cuda()
net = torch.nn.DataParallel(net)
cudnn.benchmark = False
params = {}
params['n'] = 256
params['m'] = 256
params['dim_attention'] = 512
params['D'] = 684
params['K'] = 5748
params['growthRate'] = 24
params['reduction'] = 0.5
params['bottleneck'] = True
params['use_dropout'] = True
params['input_channels'] = 3
params['cuda'] = args.cuda
# load model
OCR = Encoder_Decoder(params)
if args.cuda:
OCR.load_state_dict(copyStateDict(torch.load(ocr_modelpara)))
else:
OCR.load_state_dict(copyStateDict(torch.load(ocr_modelpara, map_location='cpu')))
if args.cuda:
#OCR = OCR.cuda()
OCR = torch.nn.DataParallel(OCR)
cudnn.benchmark = False
OCR.eval()
net.eval()
# load dictionary
worddicts = load_dict(dictionary_target)
worddicts_r = [None] * len(worddicts)
for kk, vv in worddicts.items():
worddicts_r[vv] = kk
t = time.time()
fontPIL = '/usr/share/fonts/truetype/fonts-japanese-gothic.ttf' # japanese font
size = 40
colorBGR = (0,0,255)
paper = ET.Element('paper')
paper.set('xmlns', "http://codh.rois.ac.jp/modern-magazine/")
# load data
for k, image_path in enumerate(image_list[:]):
print("Test image {:d}/{:d}: {:s}".format(k+1, len(image_list), image_path), end='\r')
res_img_file = result_folder + "res_" + os.path.basename(image_path)
#print (res_img_file, os.path.basename(image_path), os.path.exists(res_img_file))
#if os.path.exists(res_img_file): continue
#image = imgproc.loadImage(image_path)
'''image = cv2.imread(image_path, cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ret2,image = cv2.threshold(image,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
height = image.shape[0]
width = image.shape[1]
scale = 1000.0/height
H = int(image.shape[0] * scale)
W = int(image.shape[1] * scale)
image = cv2.resize(image , (W, H))
print(image.shape, image_path)
cv2.imwrite(image_path, image)
continue'''
image = cv2.imread(image_path, cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
h, w = image.shape[0], image.shape[1]
print(image_path)
page = ET.SubElement(paper, "page")
page.set('file', os.path.basename(image_path).replace('.jpg', ''))
page.set('height', str(h))
page.set('width', str(w))
page.set('dpi', str(100))
page.set('number', str(1))
bboxes, polys, score_text = test_net(net, image, args.text_threshold, args.link_threshold, args.low_text, args.cuda, args.poly)
text = []
localtions = []
for i, box in enumerate(bboxes):
poly = np.array(box).astype(np.int32)
min_x = np.min(poly[:,0])
max_x = np.max(poly[:,0])
min_y = np.min(poly[:,1])
max_y = np.max(poly[:,1])
if min_x < 0:
min_x = 0
if min_y < 0:
min_y = 0
#image = cv2.rectangle(image,(min_x,min_y),(max_x,max_y),(0,255,0),3)
input_img = image[min_y:max_y, min_x:max_x]
w = max_x - min_x + 1
h = max_y - min_y + 1
line = ET.SubElement(page, "line")
line.set("x", str(min_x))
line.set("y", str(min_y))
line.set("height", str(h))
line.set("width", str(w))
if w < h:
rate = 20.0/w
w = int(round(w*rate))
h = int(round(h* rate / 20.0) * 20)
else:
rate = 20.0/h
w = int(round(w*rate / 20.0) * 20)
h = int(round(h* rate))
#print (w, h, rate)
input_img = cv2.resize(input_img, (w,h))
mat = np.zeros([1, h, w], dtype='uint8')
mat[0,:,:] = 0.299* input_img[:, :, 0] + 0.587 * input_img[:, :, 1] + 0.114 * input_img[:, :, 2]
xx_pad = mat.astype(np.float32) / 255.
xx_pad = torch.from_numpy(xx_pad[None, :, :, :]) # (1,1,H,W)
if args.cuda:
xx_pad.cuda()
with torch.no_grad():
sample, score, alpha_past_list = gen_sample(OCR, xx_pad, params, args.cuda, k=10, maxlen=600)
score = score / np.array([len(s) for s in sample])
ss = sample[score.argmin()]
alpha_past = alpha_past_list[score.argmin()]
result = ''
i = 0
location = []
for vv in ss:
if vv == 0: # <eol>
break
alpha = alpha_past[i]
if i != 0: alpha = alpha_past[i] - alpha_past[i-1]
(y, x) = np.unravel_index(np.argmax(alpha, axis=None), alpha.shape)
#print (int(16* x /rate), int(16* y/rate) , chr(int(worddicts_r[vv],16)))
location.append([int(16* x/rate) + min_x, int(16* y/rate) + min_y])
#image = cv2.circle(image,(int(16* x/rate) - 8 + min_x, int(16* y/rate) + 8 + min_y),25, (0,0,255), -1)
result += chr(int(worddicts_r[vv],16))
'''char = ET.SubElement(line, "char")
char.set('num_cand', '1')
char.set('x', str(int(16* x/rate) - 8 + min_x))
char.set('y', str(int(16* y/rate) + 8 + min_y))
res = ET.SubElement(char, "result")
res.set('CC', str(100))
res.text = chr(int(worddicts_r[vv],16))
cand = ET.SubElement(char, "cand")
cand.set('CC', str(100))
cand.text = chr(int(worddicts_r[vv],16))'''
i+=1
line.text = result
text.append(result)
localtions.append(location)
image = cv2_putText_1(img = image, text = result, org = (min_x, max_x, min_y, max_y), fontFace = fontPIL, fontScale = size, color = colorBGR)
print('save image')
# save score text
filename, file_ext = os.path.splitext(os.path.basename(image_path))
mask_file = result_folder + "/res_" + filename + '_mask.jpg'
#cv2.imwrite(mask_file, score_text)
file_utils.saveResult(image_path, image, polys, dirname=result_folder)
xml_string = ET.tostring(paper, 'Shift_JIS')
fout = codecs.open('./data/result.xml', 'w', 'shift_jis')
fout.write(xml_string.decode('shift_jis'))
fout.close()
print("elapsed time : {}s".format(time.time() - t))
if __name__ == "__main__":
test(args.trained_model, args.model_path, args.dictionary_target)