-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdata_loader.py
263 lines (203 loc) · 10.9 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import numpy as np
from pathlib import Path
from SlideRunner.dataAccess.database import Database
import openslide
from random import randint
from lib.object_detection_helper import *
from PIL import ImageFile
from fastai import *
from fastai.vision import *
from fastai.callbacks import *
from fastai.data_block import *
class SlideContainer():
def __init__(self, file: Path, annotations:dict, y, level: int=0, width: int=256, height: int=256, sample_func: callable=None):
self.file = file
self.slide = openslide.open_slide(str(file))
self.width = width
self.height = height
self.down_factor = self.slide.level_downsamples[level]
self.y = y
self.annotations = annotations
self.sample_func = sample_func
self.classes = list(set(self.y[1]))
if level is None:
level = self.slide.level_count - 1
self.level = level
def get_patch(self, x: int=0, y: int=0):
return np.array(self.slide.read_region(location=(int(x * self.down_factor),int(y * self.down_factor)),
level=self.level, size=(self.width, self.height)))[:, :, :3]
@property
def shape(self):
return (self.width, self.height)
def __str__(self):
return 'SlideContainer with:\n sample func: '+str(self.sample_func)+'\n slide:'+str(self.file)
def get_new_train_coordinates(self):
# use passed sampling method
if callable(self.sample_func):
return self.sample_func(self.y, **{"classes": self.classes, "size": self.shape,
"level_dimensions": self.slide.level_dimensions,
"annotations" : self.annotations,
"level": self.level, "container" : self})
# use default sampling method
class_id = np.random.choice(self.classes, 1)[0]
ids = self.y[1] == class_id
xmin, ymin, _, _ = np.array(self.y[0])[ids][randint(0, np.count_nonzero(ids) - 1)]
return int(xmin - self.shape / 2), int(ymin - self.height / 2)
def bb_pad_collate_min(samples:BatchSamples, pad_idx:int=0) -> Tuple[FloatTensor, Tuple[LongTensor, LongTensor]]:
"Function that collect `samples` of labelled bboxes and adds padding with `pad_idx`."
samples = [s for s in samples if s[1].data[0].shape[0] > 0] # check that labels are available
max_len = max([len(s[1].data[1]) for s in samples])
bboxes = torch.zeros(len(samples), max_len, 4)
labels = torch.zeros(len(samples), max_len).long() + pad_idx
imgs = []
for i,s in enumerate(samples):
imgs.append(s[0].data[None])
bbs, lbls = s[1].data
bboxes[i,-len(lbls):] = bbs
labels[i,-len(lbls):] = torch.from_numpy(lbls)
return torch.cat(imgs,0), (bboxes,labels)
class SlideLabelList(LabelList):
def __getitem__(self,idxs:Union[int,np.ndarray])->'LabelList':
idxs = try_int(idxs)
if isinstance(idxs, numbers.Integral):
if self.item is None:
slide_container = self.x.items[idxs]
xmin, ymin = slide_container.get_new_train_coordinates()
x = self.x.get(idxs, xmin, ymin)
y = self.y.get(idxs, xmin, ymin)
else:
x,y = self.item ,0
if self.tfms or self.tfmargs:
x = x.apply_tfms(self.tfms, **self.tfmargs)
if hasattr(self, 'tfms_y') and self.tfm_y and self.item is None:
y = y.apply_tfms(self.tfms_y, **{**self.tfmargs_y, 'do_resolve':False})
if y is None: y=0
return x,y
else:
return self.new(self.x[idxs], self.y[idxs])
PreProcessors = Union[PreProcessor, Collection[PreProcessor]]
fastai_types[PreProcessors] = 'PreProcessors'
class SlideItemList(ItemList):
def __init__(self, items:Iterator, path:PathOrStr='.', label_cls:Callable=None, inner_df:Any=None,
processor:PreProcessors=None, x:'ItemList'=None, ignore_empty:bool=False):
self.path = Path(path)
self.num_parts = len(self.path.parts)
self.items,self.x,self.ignore_empty = items,x,ignore_empty
self.sizes = [None] * len(self.items)
if not isinstance(self.items,np.ndarray): self.items = array(self.items, dtype=object)
self.label_cls,self.inner_df,self.processor = ifnone(label_cls,self._label_cls),inner_df,processor
self._label_list,self._split = SlideLabelList,ItemLists
self.copy_new = ['x', 'label_cls', 'path']
def __getitem__(self,idxs: int, x: int=0, y: int=0)->Any:
idxs = try_int(idxs)
if isinstance(idxs, numbers.Integral):
return self.get(idxs, x, y)
else:
return self.get(*idxs)
def label_from_list(self, labels:Iterator, label_cls:Callable=None, **kwargs)->'LabelList':
"Label `self.items` with `labels`."
labels = array(labels, dtype=object)
label_cls = self.get_label_cls(labels, label_cls=label_cls, **kwargs)
y = label_cls(labels, path=self.path, **kwargs)
res = SlideLabelList(x=self, y=y)
return res
class SlideImageItemList(SlideItemList):
pass
class SlideObjectItemList(SlideImageItemList, ImageList):
def get(self, i, x: int, y: int):
fn = self.items[i]
res = self.open(fn, x, y)
self.sizes[i] = res.size
return res
class ObjectItemListSlide(SlideObjectItemList):
def open(self, fn: SlideContainer, x: int=0, y: int=0):
return Image(pil2tensor(fn.get_patch(x, y) / 255., np.float32))
class SlideObjectCategoryList(ObjectCategoryList):
def get(self, i, x: int=0, y: int=0):
h, w = self.x.items[i].shape
bboxes, labels = self.items[i]
if x > 0 and y > 0:
bboxes = np.array(bboxes)
labels = np.array(labels)
bboxes[:, [0, 2]] = bboxes[:, [0, 2]] - x
bboxes[:, [1, 3]] = bboxes[:, [1, 3]] - y
bb_widths = (bboxes[:, 2] - bboxes[:, 0]) / 2
bb_heights = (bboxes[:, 3] - bboxes[:, 1]) / 2
ids = ((bboxes[:, 0] + bb_widths) > 0) \
& ((bboxes[:, 1] + bb_heights) > 0) \
& ((bboxes[:, 2] - bb_widths) < w) \
& ((bboxes[:, 3] - bb_heights) < h)
bboxes = bboxes[ids]
bboxes = np.clip(bboxes, 0, x)
bboxes = bboxes[:, [1, 0, 3, 2]]
labels = labels[ids]
if len(labels) == 0:
labels = np.array([0])
bboxes = np.array([[0, 0, 1, 1]])
return ImageBBox.create(h, w, bboxes, labels, classes=self.classes, pad_idx=self.pad_idx)
else:
return ImageBBox.create(h, w, bboxes[:10], labels[:10], classes=self.classes, pad_idx=self.pad_idx)
def slide_object_result(learn: Learner, anchors, detect_thresh:float=0.2, nms_thresh: float=0.3, image_count: int=5):
with torch.no_grad():
img_batch, target_batch = learn.data.one_batch(DatasetType.Train, False, False, False)
prediction_batch = learn.model(img_batch)
class_pred_batch, bbox_pred_batch = prediction_batch[:2]
regression_pred_batch = prediction_batch[3].view(-1) if len(prediction_batch) > 3 \
else [None] * class_pred_batch.shape[0]
bbox_regression_pred_batch = prediction_batch[4] if len(prediction_batch) > 4 \
else [None] * bbox_pred_batch.shape[0]
bbox_gt_batch, class_gt_batch = target_batch
for img, bbox_gt, class_gt, clas_pred, bbox_pred, reg_pred, box_reg_pred in \
list(zip(img_batch, bbox_gt_batch, class_gt_batch, class_pred_batch, bbox_pred_batch,
regression_pred_batch, bbox_regression_pred_batch))[:image_count]:
img = Image(learn.data.denorm(img))
out = process_output(clas_pred, bbox_pred, anchors, detect_thresh)
bbox_pred, scores, preds = [out[k] for k in ['bbox_pred', 'scores', 'preds']]
if bbox_pred is not None:
to_keep = nms(bbox_pred, scores, nms_thresh)
bbox_pred, preds, scores = bbox_pred[to_keep].cpu(), preds[to_keep].cpu(), scores[to_keep].cpu()
box_reg_pred = box_reg_pred[to_keep].cpu() if box_reg_pred is not None else None
t_sz = torch.Tensor([*img.size])[None].cpu()
bbox_gt = bbox_gt[np.nonzero(class_gt)].squeeze(dim=1).cpu()
class_gt = class_gt[class_gt > 0] - 1
# change gt from x,y,x2,y2 -> x,y,w,h
bbox_gt[:, 2:] = bbox_gt[:, 2:] - bbox_gt[:, :2]
bbox_gt = to_np(rescale_boxes(bbox_gt, t_sz))
if bbox_pred is not None:
bbox_pred = to_np(rescale_boxes(bbox_pred, t_sz))
# change from center to top left
bbox_pred[:, :2] = bbox_pred[:, :2] - bbox_pred[:, 2:] / 2
pred_score_classes = f'{np.mean(to_np(preds)):.2f}' if preds is not None else '0.0'
pred_score_classes_reg = f'{np.mean(to_np(box_reg_pred)):.2f}' if box_reg_pred is not None else '0.0'
gt_score = f'{np.mean(to_np(class_gt)):.2f}' if class_gt.shape[0] > 0 else '0.0'
pred_score = '' if reg_pred is None else f'Box:{pred_score_classes} \n Reg:{to_np(reg_pred):.2f}'
if box_reg_pred is None:
show_results(img, bbox_pred, preds, scores, list(range(0, learn.data.c))
, bbox_gt, class_gt, (15, 3), titleA=str(gt_score), titleB=str(pred_score), titleC='CAM', clas_pred=clas_pred, anchors=anchors)
else:
pred_score_reg = f'BoxReg:{pred_score_classes_reg} \n Reg:{to_np(reg_pred):.2f}'
show_results_with_breg(img, bbox_pred, preds, box_reg_pred, scores, list(range(0, learn.data.c))
, bbox_gt, class_gt, (15, 15), titleA=str(gt_score), titleB=str(pred_score),
titleC=pred_score_reg)
def show_results_with_breg(img, bbox_pred, preds, scores, breg_pred, classes, bbox_gt, preds_gt, figsize=(5,5)
, titleA: str="", titleB: str="", titleC: str=""):
_, ax = plt.subplots(nrows=1, ncols=3, figsize=figsize)
ax[0].set_title(titleA)
ax[1].set_title(titleB)
ax[2].set_title(titleC)
# show gt
img.show(ax=ax[0])
for bbox, c in zip(bbox_gt, preds_gt):
txt = str(c.item()) if classes is None else classes[c.item()]
draw_rect(ax[0], [bbox[1],bbox[0],bbox[3],bbox[2]], text=f'{txt}')
# show prediction class
img.show(ax=ax[1])
if bbox_pred is not None:
for bbox, c, scr in zip(bbox_pred, preds, scores):
txt = str(c.item()) if classes is None else classes[c.item()]
draw_rect(ax[1], [bbox[1],bbox[0],bbox[3],bbox[2]], text=f'{txt} {scr.item():.1f}')
# show prediction class
img.show(ax=ax[2])
if bbox_pred is not None:
for bbox, c in zip(bbox_pred, breg_pred):
draw_rect(ax[1], [bbox[1],bbox[0],bbox[3],bbox[2]], text=f'{c.item():.1f}')