-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathq2_NER.py
385 lines (330 loc) · 13.7 KB
/
q2_NER.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import os
import getpass
import sys
import time
import numpy as np
import tensorflow as tf
from q2_initialization import xavier_weight_init
import data_utils.utils as du
import data_utils.ner as ner
from utils import data_iterator
from model import LanguageModel
class Config(object):
"""Holds model hyperparams and data information.
The config class is used to store various hyperparameters and dataset
information parameters. Model objects are passed a Config() object at
instantiation.
"""
embed_size = 50
batch_size = 64
label_size = 5
hidden_size = 100
max_epochs = 24
early_stopping = 2
dropout = 0.9
lr = 0.001
l2 = 0.001
window_size = 3
class NERModel(LanguageModel):
"""Implements a NER (Named Entity Recognition) model.
This class implements a deep network for named entity recognition. It
inherits from LanguageModel, which has an add_embedding method in addition to
the standard Model method.
"""
def load_data(self, debug=False):
"""Loads starter word-vectors and train/dev/test data."""
# Load the starter word vectors
self.wv, word_to_num, num_to_word = ner.load_wv(
'data/ner/vocab.txt', 'data/ner/wordVectors.txt')
tagnames = ['O', 'LOC', 'MISC', 'ORG', 'PER']
self.num_to_tag = dict(enumerate(tagnames))
tag_to_num = {v:k for k,v in self.num_to_tag.iteritems()}
# Load the training set
docs = du.load_dataset('data/ner/train')
self.X_train, self.y_train = du.docs_to_windows(
docs, word_to_num, tag_to_num, wsize=self.config.window_size)
if debug:
self.X_train = self.X_train[:1024]
self.y_train = self.y_train[:1024]
# Load the dev set (for tuning hyperparameters)
docs = du.load_dataset('data/ner/dev')
self.X_dev, self.y_dev = du.docs_to_windows(
docs, word_to_num, tag_to_num, wsize=self.config.window_size)
if debug:
self.X_dev = self.X_dev[:1024]
self.y_dev = self.y_dev[:1024]
# Load the test set (dummy labels only)
docs = du.load_dataset('data/ner/test.masked')
self.X_test, self.y_test = du.docs_to_windows(
docs, word_to_num, tag_to_num, wsize=self.config.window_size)
def add_placeholders(self):
"""Generate placeholder variables to represent the input tensors
These placeholders are used as inputs by the rest of the model building
code and will be fed data during training. Note that when "None" is in a
placeholder's shape, it's flexible
Adds following nodes to the computational graph
input_placeholder: Input placeholder tensor of shape
(None, window_size), type tf.int32
labels_placeholder: Labels placeholder tensor of shape
(None, label_size), type tf.float32
dropout_placeholder: Dropout value placeholder (scalar),
type tf.float32
Add these placeholders to self as the instance variables
self.input_placeholder
self.labels_placeholder
self.dropout_placeholder
(Don't change the variable names)
"""
### YOUR CODE HERE
self.input_placeholder = tf.placeholder(tf.int32,
shape=(None, self.config.window_size))
self.labels_placeholder = tf.placeholder(tf.float32,
shape=(None, self.config.label_size))
self.dropout_placeholder = tf.placeholder(tf.float32,
shape=())
### END YOUR CODE
def create_feed_dict(self, input_batch, dropout, label_batch=None):
"""Creates the feed_dict for softmax classifier.
A feed_dict takes the form of:
feed_dict = {
<placeholder>: <tensor of values to be passed for placeholder>,
....
}
Hint: The keys for the feed_dict should be a subset of the placeholder
tensors created in add_placeholders.
Hint: When label_batch is None, don't add a labels entry to the feed_dict.
Args:
input_batch: A batch of input data.
label_batch: A batch of label data.
Returns:
feed_dict: The feed dictionary mapping from placeholders to values.
"""
### YOUR CODE HERE
feed_dict = {
self.input_placeholder : input_batch,
self.labels_placeholder : label_batch,
self.dropout_placeholder : dropout
}
### END YOUR CODE
return feed_dict
def add_embedding(self):
"""Add embedding layer that maps from vocabulary to vectors.
Creates an embedding tensor (of shape (len(self.wv), embed_size). Use the
input_placeholder to retrieve the embeddings for words in the current batch.
(Words are discrete entities. They need to be transformed into vectors for use
in deep-learning. Although we won't do so in this problem, in practice it's
useful to initialize the embedding with pre-trained word-vectors. For this
problem, using the default initializer is sufficient.)
Hint: This layer should use the input_placeholder to index into the
embedding.
Hint: You might find tf.nn.embedding_lookup useful.
Hint: See following link to understand what -1 in a shape means.
https://www.tensorflow.org/versions/r0.8/api_docs/python/array_ops.html#reshape
Hint: Check the last slide from the TensorFlow lecture.
Hint: Here are the dimensions of the variables you will need to create:
L: (len(self.wv), embed_size)
Returns:
window: tf.Tensor of shape (-1, window_size*embed_size)
"""
# The embedding lookup is currently only implemented for the CPU
with tf.device('/cpu:0'):
### YOUR CODE HERE
raise NotImplementedError
### END YOUR CODE
return window
def add_model(self, window):
"""Adds the 1-hidden-layer NN.
Hint: Use a variable_scope (e.g. "Layer") for the first hidden layer, and
another variable_scope (e.g. "Softmax") for the linear transformation
preceding the softmax. Make sure to use the xavier_weight_init you
defined in the previous part to initialize weights.
Hint: Make sure to add in regularization and dropout to this network.
Regularization should be an addition to the cost function, while
dropout should be added after both variable scopes.
Hint: You might consider using a tensorflow Graph Collection (e.g
"total_loss") to collect the regularization and loss terms (which you
will add in add_loss_op below).
Hint: Here are the dimensions of the various variables you will need to
create
W: (window_size*embed_size, hidden_size)
b1: (hidden_size,)
U: (hidden_size, label_size)
b2: (label_size)
https://www.tensorflow.org/versions/r0.7/api_docs/python/framework.html#graph-collections
Args:
window: tf.Tensor of shape (-1, window_size*embed_size)
Returns:
output: tf.Tensor of shape (batch_size, label_size)
"""
### YOUR CODE HERE
raise NotImplementedError
### END YOUR CODE
return output
def add_loss_op(self, y):
"""Adds cross_entropy_loss ops to the computational graph.
Hint: You can use tf.nn.softmax_cross_entropy_with_logits to simplify your
implementation. You might find tf.reduce_mean useful.
Args:
pred: A tensor of shape (batch_size, n_classes)
Returns:
loss: A 0-d tensor (scalar)
"""
### YOUR CODE HERE
raise NotImplementedError
### END YOUR CODE
return loss
def add_training_op(self, loss):
"""Sets up the training Ops.
Creates an optimizer and applies the gradients to all trainable variables.
The Op returned by this function is what must be passed to the
`sess.run()` call to cause the model to train. See
https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#Optimizer
for more information.
Hint: Use tf.train.AdamOptimizer for this model.
Calling optimizer.minimize() will return a train_op object.
Args:
loss: Loss tensor, from cross_entropy_loss.
Returns:
train_op: The Op for training.
"""
### YOUR CODE HERE
raise NotImplementedError
### END YOUR CODE
return train_op
def __init__(self, config):
"""Constructs the network using the helper functions defined above."""
self.config = config
self.load_data(debug=False)
self.add_placeholders()
window = self.add_embedding()
y = self.add_model(window)
self.loss = self.add_loss_op(y)
self.predictions = tf.nn.softmax(y)
one_hot_prediction = tf.argmax(self.predictions, 1)
correct_prediction = tf.equal(
tf.argmax(self.labels_placeholder, 1), one_hot_prediction)
self.correct_predictions = tf.reduce_sum(tf.cast(correct_prediction, 'int32'))
self.train_op = self.add_training_op(self.loss)
def run_epoch(self, session, input_data, input_labels,
shuffle=True, verbose=True):
orig_X, orig_y = input_data, input_labels
dp = self.config.dropout
# We're interested in keeping track of the loss and accuracy during training
total_loss = []
total_correct_examples = 0
total_processed_examples = 0
total_steps = len(orig_X) / self.config.batch_size
for step, (x, y) in enumerate(
data_iterator(orig_X, orig_y, batch_size=self.config.batch_size,
label_size=self.config.label_size, shuffle=shuffle)):
feed = self.create_feed_dict(input_batch=x, dropout=dp, label_batch=y)
loss, total_correct, _ = session.run(
[self.loss, self.correct_predictions, self.train_op],
feed_dict=feed)
total_processed_examples += len(x)
total_correct_examples += total_correct
total_loss.append(loss)
##
if verbose and step % verbose == 0:
sys.stdout.write('\r{} / {} : loss = {}'.format(
step, total_steps, np.mean(total_loss)))
sys.stdout.flush()
if verbose:
sys.stdout.write('\r')
sys.stdout.flush()
return np.mean(total_loss), total_correct_examples / float(total_processed_examples)
def predict(self, session, X, y=None):
"""Make predictions from the provided model."""
# If y is given, the loss is also calculated
# We deactivate dropout by setting it to 1
dp = 1
losses = []
results = []
if np.any(y):
data = data_iterator(X, y, batch_size=self.config.batch_size,
label_size=self.config.label_size, shuffle=False)
else:
data = data_iterator(X, batch_size=self.config.batch_size,
label_size=self.config.label_size, shuffle=False)
for step, (x, y) in enumerate(data):
feed = self.create_feed_dict(input_batch=x, dropout=dp)
if np.any(y):
feed[self.labels_placeholder] = y
loss, preds = session.run(
[self.loss, self.predictions], feed_dict=feed)
losses.append(loss)
else:
preds = session.run(self.predictions, feed_dict=feed)
predicted_indices = preds.argmax(axis=1)
results.extend(predicted_indices)
return np.mean(losses), results
def print_confusion(confusion, num_to_tag):
"""Helper method that prints confusion matrix."""
# Summing top to bottom gets the total number of tags guessed as T
total_guessed_tags = confusion.sum(axis=0)
# Summing left to right gets the total number of true tags
total_true_tags = confusion.sum(axis=1)
print
print confusion
for i, tag in sorted(num_to_tag.items()):
prec = confusion[i, i] / float(total_guessed_tags[i])
recall = confusion[i, i] / float(total_true_tags[i])
print 'Tag: {} - P {:2.4f} / R {:2.4f}'.format(tag, prec, recall)
def calculate_confusion(config, predicted_indices, y_indices):
"""Helper method that calculates confusion matrix."""
confusion = np.zeros((config.label_size, config.label_size), dtype=np.int32)
for i in xrange(len(y_indices)):
correct_label = y_indices[i]
guessed_label = predicted_indices[i]
confusion[correct_label, guessed_label] += 1
return confusion
def save_predictions(predictions, filename):
"""Saves predictions to provided file."""
with open(filename, "wb") as f:
for prediction in predictions:
f.write(str(prediction) + "\n")
def test_NER():
"""Test NER model implementation.
You can use this function to test your implementation of the Named Entity
Recognition network. When debugging, set max_epochs in the Config object to 1
so you can rapidly iterate.
"""
config = Config()
with tf.Graph().as_default():
model = NERModel(config)
init = tf.initialize_all_variables()
saver = tf.train.Saver()
with tf.Session() as session:
best_val_loss = float('inf')
best_val_epoch = 0
session.run(init)
for epoch in xrange(config.max_epochs):
print 'Epoch {}'.format(epoch)
start = time.time()
###
train_loss, train_acc = model.run_epoch(session, model.X_train,
model.y_train)
val_loss, predictions = model.predict(session, model.X_dev, model.y_dev)
print 'Training loss: {}'.format(train_loss)
print 'Training acc: {}'.format(train_acc)
print 'Validation loss: {}'.format(val_loss)
if val_loss < best_val_loss:
best_val_loss = val_loss
best_val_epoch = epoch
if not os.path.exists("./weights"):
os.makedirs("./weights")
saver.save(session, './weights/ner.weights')
if epoch - best_val_epoch > config.early_stopping:
break
###
confusion = calculate_confusion(config, predictions, model.y_dev)
print_confusion(confusion, model.num_to_tag)
print 'Total time: {}'.format(time.time() - start)
saver.restore(session, './weights/ner.weights')
print 'Test'
print '=-=-='
print 'Writing predictions to q2_test.predicted'
_, predictions = model.predict(session, model.X_test, model.y_test)
save_predictions(predictions, "q2_test.predicted")
if __name__ == "__main__":
test_NER()