This repository has been archived by the owner on Dec 24, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathrun_mixed_env.py
202 lines (171 loc) · 7.38 KB
/
run_mixed_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
"""
An example of mixed environment with ppo.
"""
import argparse
import json
import os
from pprint import pprint
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import gym
import pybullet_envs
import machina as mc
from machina.pols import GaussianPol, CategoricalPol, MultiCategoricalPol
from machina.algos import ppo_clip
from machina.vfuncs import DeterministicSVfunc
from machina.envs import GymEnv, C2DEnv, AcInObEnv, RewInObEnv
from machina.traj import Traj
from machina.traj import epi_functional as ef
from machina.samplers import EpiSampler
from machina import logger
from machina.utils import measure, set_device
from simple_net import PolNet, VNet, PolNetLSTM, VNetLSTM
parser = argparse.ArgumentParser()
parser.add_argument('--log', type=str, default='garbage',
help='Directory name of log.')
parser.add_argument('--env_name', type=str,
default='Pendulum-v0', help='Name of environment.')
parser.add_argument('--record', action='store_true',
default=False, help='If True, movie is saved.')
parser.add_argument('--seed', type=int, default=256)
parser.add_argument('--max_epis', type=int,
default=1000000, help='Number of episodes to run.')
parser.add_argument('--num_parallel', type=int, default=4,
help='Number of processes to sample.')
parser.add_argument('--cuda', type=int, default=-1, help='cuda device number.')
parser.add_argument('--max_epis_per_iter', type=int,
default=1024, help='Number of episodes in an iteration.')
parser.add_argument('--epoch_per_iter', type=int, default=10,
help='Number of epoch in an iteration')
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--rnn', action='store_true',
default=False, help='If True, network is reccurent.')
parser.add_argument('--rnn_batch_size', type=int, default=8,
help='Number of sequences included in batch of rnn.')
parser.add_argument('--pol_lr', type=float, default=3e-4,
help='Policy learning rate')
parser.add_argument('--vf_lr', type=float, default=3e-4,
help='Value function learning rate')
parser.add_argument('--cell_size', type=int, default=512,
help='Cell size of rnn.')
parser.add_argument('--h_size', type=int, default=512,
help='Hidden size of rnn.')
parser.add_argument('--max_grad_norm', type=float, default=0.5,
help='Value of maximum gradient norm.')
parser.add_argument('--clip_param', type=float, default=0.2,
help='Value of clipping liklihood ratio.')
parser.add_argument('--gamma', type=float, default=0.995,
help='Discount factor.')
parser.add_argument('--lam', type=float, default=1,
help='Tradeoff value of bias variance.')
args = parser.parse_args()
if not os.path.exists(args.log):
os.makedirs(args.log)
with open(os.path.join(args.log, 'args.json'), 'w') as f:
json.dump(vars(args), f)
pprint(vars(args))
if not os.path.exists(os.path.join(args.log, 'models')):
os.makedirs(os.path.join(args.log, 'models'))
np.random.seed(args.seed)
torch.manual_seed(args.seed)
device_name = 'cpu' if args.cuda < 0 else "cuda:{}".format(args.cuda)
device = torch.device(device_name)
set_device(device)
score_file = os.path.join(args.log, 'progress.csv')
logger.add_tabular_output(score_file)
logger.add_tensorboard_output(args.log)
env1 = GymEnv('HumanoidBulletEnv-v0')
env1.original_env.seed(args.seed)
env1 = AcInObEnv(env1)
env1 = RewInObEnv(env1)
env1 = C2DEnv(env1)
env2 = GymEnv('HumanoidFlagrunBulletEnv-v0')
env2.original_env.seed(args.seed)
env2 = AcInObEnv(env2)
env2 = RewInObEnv(env2)
env2 = C2DEnv(env2)
assert env1.observation_space == env2.observation_space
assert env1.action_space.shape == env2.action_space.shape
observation_space = env1.observation_space
action_space = env1.action_space
if args.rnn:
pol_net = PolNetLSTM(observation_space, action_space, h_size=args.h_size,
cell_size=args.cell_size)
else:
pol_net = PolNet(observation_space, action_space)
pol = MultiCategoricalPol(observation_space, action_space, pol_net, args.rnn)
if args.rnn:
vf_net = VNetLSTM(observation_space, h_size=args.h_size,
cell_size=args.cell_size)
else:
vf_net = VNet(observation_space)
vf = DeterministicSVfunc(observation_space, vf_net, args.rnn)
sampler1 = EpiSampler(
env1, pol, num_parallel=args.num_parallel, seed=args.seed)
sampler2 = EpiSampler(
env2, pol, num_parallel=args.num_parallel, seed=args.seed)
optim_pol = torch.optim.Adam(pol_net.parameters(), args.pol_lr)
optim_vf = torch.optim.Adam(vf_net.parameters(), args.vf_lr)
total_epi = 0
total_step = 0
max_rew = -1e6
while args.max_epis > total_epi:
with measure('sample'):
epis1 = sampler1.sample(pol, max_epis=args.max_epis_per_iter)
epis2 = sampler2.sample(pol, max_epis=args.max_epis_per_iter)
with measure('train'):
traj1 = Traj()
traj2 = Traj()
traj1.add_epis(epis1)
traj1 = ef.compute_vs(traj1, vf)
traj1 = ef.compute_rets(traj1, args.gamma)
traj1 = ef.compute_advs(traj1, args.gamma, args.lam)
traj1 = ef.centerize_advs(traj1)
traj1 = ef.compute_h_masks(traj1)
traj1.register_epis()
traj2.add_epis(epis2)
traj2 = ef.compute_vs(traj2, vf)
traj2 = ef.compute_rets(traj2, args.gamma)
traj2 = ef.compute_advs(traj2, args.gamma, args.lam)
traj2 = ef.centerize_advs(traj2)
traj2 = ef.compute_h_masks(traj2)
traj2.register_epis()
traj1.add_traj(traj2)
result_dict = ppo_clip.train(traj=traj1, pol=pol, vf=vf, clip_param=args.clip_param,
optim_pol=optim_pol, optim_vf=optim_vf, epoch=args.epoch_per_iter, batch_size=args.batch_size if not args.rnn else args.rnn_batch_size, max_grad_norm=args.max_grad_norm)
total_epi += traj1.num_epi
step = traj1.num_step
total_step += step
rewards1 = [np.sum(epi['rews']) for epi in epis1]
rewards2 = [np.sum(epi['rews']) for epi in epis2]
mean_rew = np.mean(rewards1 + rewards2)
logger.record_tabular_misc_stat('Reward1', rewards1)
logger.record_tabular_misc_stat('Reward2', rewards2)
logger.record_results(args.log, result_dict, score_file,
total_epi, step, total_step,
rewards1 + rewards2,
plot_title='humanoid')
if mean_rew > max_rew:
torch.save(pol.state_dict(), os.path.join(
args.log, 'models', 'pol_max.pkl'))
torch.save(vf.state_dict(), os.path.join(
args.log, 'models', 'vf_max.pkl'))
torch.save(optim_pol.state_dict(), os.path.join(
args.log, 'models', 'optim_pol_max.pkl'))
torch.save(optim_vf.state_dict(), os.path.join(
args.log, 'models', 'optim_vf_max.pkl'))
max_rew = mean_rew
torch.save(pol.state_dict(), os.path.join(
args.log, 'models', 'pol_last.pkl'))
torch.save(vf.state_dict(), os.path.join(
args.log, 'models', 'vf_last.pkl'))
torch.save(optim_pol.state_dict(), os.path.join(
args.log, 'models', 'optim_pol_last.pkl'))
torch.save(optim_vf.state_dict(), os.path.join(
args.log, 'models', 'optim_vf_last.pkl'))
del traj1
del traj2
del sampler1
del sampler2